Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39205297

RESUMO

Bovine adenovirus (BAdV)-3 genome encodes a 26 kDa core protein designated as protein VII, which localizes to the nucleus/nucleolus. The requirement of a protein VII-complementing cell line for the replication of VII-deleted BAdV-3 suggests that protein VII is required for the production of infectious progeny virions. An analysis of the BAV.VIId+ virus (only phenotypically positive for protein VII) detected no noticeable differences in the expression and incorporation of viral proteins in the virions. Moreover, protein VII does not appear to be essential for the formation of mature BAV.VIId+. However, protein VII appeared to be required for the efficient assembly of mature BAV.VIId- virions. An analysis of the BAV.VIId- virus (genotypically and phenotypically negative for protein VII) in non-complementing cells detected the inefficient release of virions from endosomes, which affected the expression of viral proteins or DNA replication. Moreover, the absence of protein VII altered the proteolytic cleavage of protein VI of BAV.VIId-. Our results suggest that BAdV-3 protein VII appears to be required for efficient production of mature virions. Moreover, the absence of protein VII produces non-infectious BAdV-3 by altering the release of BAdV-3 from endosomes/vesicles.


Assuntos
Mastadenovirus , Vírion , Replicação Viral , Animais , Vírion/metabolismo , Vírion/genética , Bovinos , Mastadenovirus/genética , Mastadenovirus/fisiologia , Mastadenovirus/metabolismo , Linhagem Celular , Proteínas Virais/metabolismo , Proteínas Virais/genética , Montagem de Vírus , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Replicação do DNA
2.
Sci Rep ; 14(1): 18882, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143261

RESUMO

Oligodeoxynucleotides containing CpG motifs (CpG-ODN) can promote antimicrobial immunity in chickens by enriching immune compartments and activating immune cells. Innate memory, or trained immunity, has been demonstrated in humans and mice, featuring the absence of specificity to the initial stimulus and subsequently cross-protection against pathogens. We hypothesize that CpG-ODN can induce trained immunity in chickens. We delivered single or multiple administrations of CpG-ODN to birds and mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis of peripheral blood mononuclear cells were quantified using Seahorse XFp. Next, chickens were administered with CpG-ODN twice at 1 and 4 day of age and challenged with Escherichia coli at 27 days of age. The CpG-ODN administered groups had significantly higher mitochondrial OXPHOS until 21 days of age while cellular glycolysis gradually declined by 14 days of age. The group administered with CpG-ODN twice at 1 and 4 days of age had significantly higher survival, lower clinical score and bacterial load following challenge with E. coli at 27 d of age. This study demonstrated the induction of trained immunity in broiler chickens following administration of CpG-ODN twice during the first 4 days of age to protect birds against E. coli septicemia at 27 days of age.


Assuntos
Galinhas , Infecções por Escherichia coli , Escherichia coli , Oligodesoxirribonucleotídeos , Doenças das Aves Domésticas , Sepse , Animais , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Galinhas/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Sepse/imunologia , Sepse/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fosforilação Oxidativa , Imunidade Treinada
3.
Poult Sci ; 103(10): 104078, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096829

RESUMO

In the past, we demonstrated that oligodeoxynucleotides containing CpG motifs (CpG-ODN) mimicking bacterial DNA, stimulate the innate immune system of neonatal broiler chickens and protect them against Escherichia coli and Salmonella Typhimurium (S. Typhimurium) septicemia. The first line of innate immune defense mechanism is formed by heterophils and plays a critical protective role against bacterial septicemia in avian species. Therefore, the objectives of this study were 1) to explore the kinetics of CpG-ODN mediated antibacterial mechanisms of heterophils following single or twice administration of CpG-ODN in neonatal broiler chickens and 2) to investigate the kinetics of the immunoprotective efficacy of single versus twice administration of CpG-ODN against S. Typhimurium septicemia. In this study, we successfully developed and optimized flow cytometry-based assays to measure phagocytosis, oxidative burst, and degranulation activity of heterophils. Birds that received CpG-ODN had significantly increased (p < 0.05) phagocytosis, oxidative burst, and degranulation activity of heterophils as early as 24 h following CpG-ODN administration. Twice administration of CpG-ODN significantly increased the phagocytosis activity of heterophils. In addition, our newly developed CD107a based flow cytometry assay demonstrated a significantly higher degranulation activity of heterophils following twice than single administration of CpG-ODN. However, the oxidative burst activity of heterophils was not significantly different between birds that received CpG-ODN only once or twice. Furthermore, delivery of CpG-ODN twice increased immunoprotection against S. Typhimurium septicemia compared to once but the difference was not statistically significant. In conclusion, we demonstrated enhanced bactericidal activity of heterophils after administration of CpG-ODN to neonatal broiler chickens. Further investigations will be required to identify other activated innate immune cells and the specific molecular pathways associated with the CpG-ODN mediated activation of heterophils.


Assuntos
Galinhas , Imunidade Inata , Oligodesoxirribonucleotídeos , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella typhimurium , Sepse , Animais , Galinhas/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/administração & dosagem , Salmonella typhimurium/fisiologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Sepse/veterinária , Sepse/prevenção & controle , Sepse/imunologia , Imunidade Inata/efeitos dos fármacos , Animais Recém-Nascidos , Fagocitose/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos
4.
Viruses ; 16(5)2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38793614

RESUMO

The L 1 region of bovine adenovirus (BAdV)-3 encodes a multifunctional protein named protein VII. Anti-protein VII sera detected a protein of 26 kDa in transfected or BAdV-3-infected cells, which localizes to nucleus and nucleolus of infected/transfected cells. Analysis of mutant protein VII identified four redundant overlapping nuclear/nucleolar localization signals as deletion of all four potential nuclear/nucleolar localization signals localizes protein VII predominantly to the cytoplasm. The nuclear import of protein VII appears to use importin α (α-1), importin-ß (ß-1) and transportin-3 nuclear transport receptors. In addition, different nuclear transport receptors also require part of protein VII outside nuclear localization sequences for efficient interaction. Proteomic analysis of protein complexes purified from recombinant BAdV-3 expressing protein VII containing Strep Tag II identified potential viral and cellular proteins interacting with protein VII. Here, we confirm that protein VII interacts with IVa2 and protein VIII in BAdV-3-infected cells. Moreover, amino acids 91-101 and 126-137, parts of non-conserved region of protein VII, are required for interaction with IVa2 and protein VIII, respectively.


Assuntos
Interações Hospedeiro-Patógeno , Mastadenovirus , Proteínas Virais , Animais , Bovinos , Humanos , Transporte Ativo do Núcleo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Mastadenovirus/metabolismo , Mastadenovirus/genética , Mastadenovirus/fisiologia , Sinais de Localização Nuclear , Ligação Proteica , Proteômica/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética
5.
J Transl Med ; 22(1): 80, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243294

RESUMO

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Humanos , Animais , Clostridium perfringens/genética , Galinhas/genética , RNA Ribossômico 16S/genética , Disbiose , Jejuno/química , Jejuno/patologia , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia
6.
Front Vet Sci ; 10: 1209597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920329

RESUMO

Variant avian reoviruses (ARVs) are economically important emerging pathogens of poultry, which mainly affect young broiler chickens and cause significant production losses. Currently, there are no effective commercial vaccines available for control and prevention of emerging variant ARVs. In this study, monovalent inactivated adjuvated (20% Emulsigen D) broiler breeder vaccines containing antigens from ARV genotype cluster (C) group -2, -4, -5, or -6, and a multivalent vaccine containing antigens from all the four indicated genotypic cluster groups were developed and evaluated for their efficacy in protecting broiler progenies against homologous or heterologous ARV challenge. The use of monovalent or multivalent inactivated vaccines in a prime-boost immunization strategy induced the production of ARV specific antibodies in broiler breeders. The maternal antibodies were effectively transferred to broiler progenies. Broiler progenies obtained from immunized breeders demonstrated milder clinical symptoms and reduced gross and histopathological lesions after homologous ARV challenge. More severe gross and histological lesions were observed in challenged progenies from unvaccinated broiler breeders. However, cross protection was not observed when either of the monovalent-vaccine groups were challenged with a heterologous virus. In addition, the progenies from the unvaccinated ARV challenged control or heterologous ARV challenged vaccinated groups had significantly reduced body weight gain (p < 0.01) than the unchallenged-control, challenged-multivalent, or homologous ARV-challenged monovalent vaccine groups. However, homologous ARV challenged progenies in the multivalent or monovalent vaccine groups had similar body weight gain as the control unchallenged group with significantly reduced viral load (p < 0.01) in the gastrocnemius tendon tissue. This study indicates that broad-spectrum protection of broiler progenies from variant ARV infections is feasible through the development of multivalent vaccines after proper characterization, selection and incorporation of multiple antigens based on circulating ARV genotypes in targeted regions.

7.
Vaccine ; 40(38): 5608-5614, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008236

RESUMO

The majority of infectious bursal disease virus (IBDV) strains circulating in the broiler chicken industry in Canada are variant strains (varIBDV). Despite high levels of maternally derived antibodies (MtAb), the circulating varIBDVs can establish infection and cause severe immunosuppression in broiler chicks. The objective of this study was to evaluate circulating varIBDVs as broiler breeder vaccine candidates and investigate their protective efficacy against varIBDV challenge in their progeny chicks. Six groups of breeders (20 females/group) were vaccinated with varIBDV strains, SK09, SK10, SK11, SK12, and SK13 or saline at the age of 13 weeks and antibody response was determined by ELISA at 3-7-, and 20- weeks post-vaccination. We also included commercial chicks for the comparison. Results showed that SK-09 is the most antigenic strain, followed by SK-10, SK-12, and SK-13. In contrast, SK-11 showed the lowest antibody response, and over time, antibody titers steadily decreased. Eggs from breeders were collected at 21-week post-vaccination and incubated to produce their respective progenies. The serum antibody titer in day-old chicks showed a successful MtAb transfer. Progeny chicks (n = 40/group) were orally challenged with varIBDV-SK-09 strain at 6 days of age and serum antibody titer (19 d and 35 d of age), bursa to body weight ratio (19 d and 35 d of age), bursal viral load (9 d and 19 d of age) was examined to assess the protection against IBDV. Following the challenge, we found a significant increase in the antibody titers in MtAb-free and commercial vaccine groups than in the varIBDV groups, both at 19 d and 35 d of age. The BBW ratio and viral load data indicated a significant homologous and heterologous protection against varIBDV-SK-09 challenge by SK-09 and SK-10 MtAbs, respectively. Overall, this study demonstrated the feasibility of developing breeder vaccines using circulating varIBDV as candidate vaccine antigens.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Anticorpos Antivirais , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Galinhas , Feminino
8.
Avian Dis ; 66(2): 165-175, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35723931

RESUMO

The poultry industry needs alternatives to antibiotics, as there are growing public concerns about the emergence of antimicrobial resistance owing to antimicrobial use in animal production. We have reported that the administration of neonatal chicks with synthetic DNA oligodeoxynucleotides containing unmethylated cytosine guanine dinucleotide (CpG) motifs (CpG-ODN) can protect against bacterial pathogens in chickens. The objective of this study was to compare the immunoprotective effects of CpG-ODN and probiotics against Escherichia coli infection vs. commonly used therapeutic antibiotics. Day-old broiler chicks were divided into five groups (n = 35/group; 30 for the challenge experiment and 5 for the flow cytometry analysis). The chicks in Group 1 received a single dose of CpG-ODN by the intramuscular route on day 4 (D4) posthatch (PH), and Group 2 received drinking water (DW) with a probiotic product (D1-D15 PH, DW). The Group 3 chicks received tetracycline antibiotics during D9-D13 in DW; the Group 4 chicks got sodium sulfamethazine on D9, D10, and D15 PH in DW; and the Group 5 chicks were administered intramuscular (IM) saline D4 PH, DW. We challenged all the groups (n = 30/group) with E. coli (1 × 105 or 1 × 106 colony-forming units/bird) on D8 PH through the subcutaneous route. Our data demonstrated that the CpG-ODNs, but not the probiotics, could protect neonatal broiler chickens against lethal E. coli septicemia, as would the tetracycline or sodium sulfamethazine. The flow cytometry analysis (n = 5/group) revealed enrichment of immune cells in the CpG-ODN group and a marked decrease in macrophages and T-cell numbers in antibiotics-treated groups, indicating immunosuppressive effects. Our data showed that, like therapeutic antibiotics, CpG-ODNs reduced clinical signs, decreased bacterial loads, and induced protection in chicks against E. coli septicemia. Unlike therapeutic antibiotics-induced immunosuppressive effects, CpG-ODN caused immune enrichment by increasing chicken immune cells recruitment. Furthermore, this study highlights that, although therapeutic antibiotics can treat bacterial infections, the ensuing immunosuppressive effects may negatively impact the overall chicken health.


Comparación de antibióticos terapéuticos, probióticos y CpG-ODN sintéticos en su eficacia protectora contra la infección letal por Escherichia coli y el impacto en el sistema inmunológico en pollos de engorde recién eclosionados. La industria avícola necesita alternativas a los antibióticos ya que existe una creciente preocupación pública sobre la aparición de resistencia a los antimicrobianos debido a su uso en la producción animal. Se ha informado que la administración de oligodesoxinucleótidos de ADN sintético que contienen motivos de dinucleótidos de citosina guanina (CpG) no metilados (CpG-ODN) a pollitos recién eclosionados puede proteger contra patógenos bacterianos en pollos. El objetivo de este estudio fue comparar los efectos inmunoprotectores de CpG-ODN y de los probióticos contra la infección por Escherichia coli frente a los antibióticos terapéuticos de uso común. Los pollos de engorde de un día se dividieron en cinco grupos (n = 35/grupo; 30 para el experimento de desafío y 5 para análisis de citometría de flujo). Los pollitos del Grupo 1 recibieron una dosis única de CpG-ODN por vía intramuscular el día 4 (D4) después de la eclosión (PH), y el Grupo 2 recibió agua potable (DW) con un producto probiótico del día uno al quince después de la eclosion en agua de bebida. Los pollitos del Grupo 3 recibieron tetraciclina durante los días nueve a trece (D9­D13) en agua de bebida (DW9; los pollitos del Grupo 4 recibieron sulfametazina de sodio en los días nueve, diez y 15 (D9, D10 y D15) después de la eclosion en agua de bebida; ya los pollitos del Grupo 5 se les administró solución salina intramuscular (IM) al día cuatro después de la eclosión en agua de bebida. Se desafiaron todos los grupos (n = 30/grupo) con E. coli (1 × 105 o 1 × 106 unidades formadoras de colonias/ave) en el día ocho después de la eclosión por vía subcutánea. Nuestros datos demostraron que los CpG-ODN, pero no los probióticos, pudieron proteger a los pollos de engorde recién eclosionados contra la septicemia letal por E. coli, al igual que la tetraciclina o la sulfametazina sódica. El análisis de citometría de flujo (n = 5/grupo) reveló un enriquecimiento de células inmunes en el grupo CpG-ODN y una marcada disminución en el número de macrófagos y células T en los grupos tratados con antibióticos, lo que indica efectos inmunosupresores. Nuestros datos mostraron que, al igual que los antibióticos terapéuticos, los CpG-ODN redujeron los signos clínicos, disminuyeron las cargas bacterianas e indujeron protección en los pollitos contra la septicemia por E. coli. A diferencia de los efectos inmunosupresores inducidos por antibióticos terapéuticos, los CpG-ODN provocaron un enriquecimiento inmunitario al aumentar el reclutamiento de células inmunitarias de pollo. Además, este estudio destaca que, aunque los antibióticos terapéuticos pueden tratar las infecciones bacterianas, los efectos inmunosupresores resultantes pueden tener un impacto negativo en la salud general de los pollos.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Probióticos , Sepse , Animais , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sulfametazina , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Oligodesoxirribonucleotídeos/farmacologia , Sistema Imunitário , Probióticos/farmacologia , Probióticos/uso terapêutico , Sepse/prevenção & controle , Sepse/veterinária , Sepse/microbiologia , Sódio , Tetraciclinas , Adjuvantes Imunológicos
9.
Front Microbiol ; 13: 869164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369435

RESUMO

Newly emerging arthrotropic avian reoviruses (ARVs) are genetically divergent, antigenically heterogeneous, and economically costly. Nevertheless, the mechanism of emerging ARV-induced disease pathogenesis and potential differences in virulence between virus genotypes have not been adequately addressed. In this study, the life cycle of ARV, including the formation of cytoplasmic ARV neo-organelles, paracrystalline structures, and virus release mechanisms, were characterized in the infected host cell by transmission electron microscopy (TEM). In addition, progressive changes in the structure of infected cells were investigated by time-lapse and field emission scanning electron (FE-SE) microscopy. ARVs from the four genotypic cluster groups included in the study caused gross and microscopic lesions in the infected birds. Marked infiltration of γδT cells, CD4+ and CD8+ T lymphocytes were observed in ARV infected tendon tissues starting day 3 post-infection. The ARV variant from genotype cluster-2 triggered significantly high trafficking of IFN-γ producing CD8+ T lymphocytes in tendon tissues and concomitantly showed high morbidity and severe disease manifestations. In contrast, the ARV variant from genotype cluster-4 was less virulent, caused milder disease, and accompanied less infiltration of IFN-γ producing CD8+ T cells. Interestingly, when we blunted antiviral immune responses using clodronate liposomes (which depletes antigen-presenting cells) or cyclosporin (which inhibits cytokine production that regulates T-cell proliferation), significantly lower IFN-γ producing CD8+ T cells infiltrated into tendon tissues, resulting in reduced tendon tissues apoptosis and milder disease manifestations. In summary, these data suggest that the degree of ARV virulence and tenosynovitis/arthritis are potentially directly associated with the ability of the virus to traffic massive infiltration of cytotoxic CD8+ T cells into the infected tissues. Moreover, the ability to traffic cytotoxic CD8+ T cells into infected tendon tissues and the severity of tenosynovitis differ between variants from different ARV genotype cluster groups. However, more than one virus isolate per genotype group needs to be tested to further confirm the association of pathogenicity with genotype. These findings can be used to further examine the interaction of viral and cellular pathways which are essential for the pathogenesis of the disease at the molecular level and to develop effective disease control strategies.

10.
Sci Rep ; 11(1): 9028, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907214

RESUMO

Synthetic CpG-ODNs can promote antimicrobial immunity in neonatal chicks by enriching immune compartments and activating immune cells. Activated immune cells undergo profound metabolic changes to meet cellular biosynthesis and energy demands and facilitate the signaling processes. We hypothesize that CpG-ODNs induced immune activation can change the host's metabolic demands in neonatal chicks. Here, we used NMR-based metabolomics to explore the potential of immuno-metabolic interactions in the orchestration of CpG-ODN-induced antimicrobial immunity. We administered CpG-ODNs to day-old broiler chicks via intrapulmonary (IPL) and intramuscular (IM) routes. A negative control group was administered IPL distilled water (DW). In each group (n = 60), chicks (n = 40) were challenged with a lethal dose of Escherichia coli, two days post-CpG-ODN administration. CpG-ODN administered chicks had significantly higher survival (P < 0.05), significantly lower cumulative clinical scores (P < 0.05), and lower bacterial loads (P < 0.05) compared to the DW control group. In parallel experiments, we compared NMR-based serum metabolomic profiles in neonatal chicks (n = 20/group, 24 h post-treatment) treated with IM versus IPL CpG-ODNs or distilled water (DW) control. Serum metabolomics revealed that IM administration of CpG-ODN resulted in a highly significant and consistent decrease in amino acids, purines, betaine, choline, acetate, and a slight decrease in glucose. IPL CpG-ODN treatment resulted in a similar decrease in purines and choline but less extensive decrease in amino acids, a stronger decrease in acetate, and a considerable increase in 2-hydroxybutyrate, 3-hydroxybutyrate, formic acid and a mild increase in TCA cycle intermediates (all P < 0.05 after FDR adjustment). These perturbations in pathways associated with energy production, amino acid metabolism and nucleotide synthesis, most probably reflect increased uptake of nutrients to the cells, to support cell proliferation triggered by the innate immune response. Our study revealed for the first time that CpG-ODNs change the metabolomic landscape to establish antimicrobial immunity in neonatal chicks. The metabolites highlighted in the present study can help future targeted studies to better understand immunometabolic interactions and pinpoint the key molecules or pathways contributing to immunity.


Assuntos
Galinhas/imunologia , Galinhas/microbiologia , Infecções por Escherichia coli/veterinária , Metaboloma , Oligodesoxirribonucleotídeos/imunologia , Doenças das Aves Domésticas/imunologia , Administração por Inalação , Animais , Bacteriemia/imunologia , Bacteriemia/prevenção & controle , Bacteriemia/veterinária , Galinhas/sangue , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/imunologia , Injeções Intramusculares/veterinária , Oligodesoxirribonucleotídeos/administração & dosagem , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...