Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(13): 962-975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355807

RESUMO

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Carcinogênese , Inibidor de Quinase Dependente de Ciclina p27/genética , Camundongos Knockout , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Microambiente Tumoral
2.
Ann N Y Acad Sci ; 1490(1): 90-104, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33594717

RESUMO

Osteosarcoma is a highly aggressive malignancy for which treatment has remained essentially unchanged for years. Our previous studies found that the F-box protein SKP2 is overexpressed in osteosarcoma, acting as a proto-oncogene; p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases and a downstream substrate of SKP2-mediated ubiquitination. Overexpression of SKP2 and underexpression of p27 are common characteristics of cancer cells. The SCFSKP2 E3 ligase ubiquitinates Thr187-phosphorylated p27 for proteasome degradation, which can be abolished by a Thr187Ala knock-in (p27T187A KI) mutation. RB1 and TP53 are two major tumor suppressors commonly coinactivated in osteosarcoma. We generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which developed osteosarcoma with full penetrance. When p27T187A KI mice were crossed on to the DKO background, p27T187A protein was found to accumulate in osteosarcoma tumor tissues. Furthermore, p27T187A promoted apoptosis in DKO tumors, slowed disease progression, and significantly prolonged overall survival. RNA sequencing analysis also linked the SCFSKP2 -p27T187A axis to potentially reduced cancer stemness. Given that RB1 and TP53 loss or coinactivation is common in human osteosarcoma, our study suggests that inhibiting the SKP2-p27 axis may represent a desirable therapeutic strategy for this cancer.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Proteínas Quinases Associadas a Fase S/metabolismo , Animais , Carcinogênese/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proto-Oncogene Mas , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética
3.
Sarcoma ; 2021: 8324348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603563

RESUMO

BACKGROUND: Six cell surface receptors, human epidermal growth factor receptor-2 (Her-2), platelet-derived growth factor receptor-ß (PDGFR-ß), insulin-like growth factor-1 receptor (IGF-1R), insulin receptor (IR), c-Met, and vascular endothelial growth factor receptor-3 (VEGFR-3), previously demonstrated variable expression across varying patient-derived and standard osteosarcoma (OS) cell lines. The current study sought to validate previous expression patterns and evaluate whether these receptors offer prognostic and/or therapeutic value. METHODS: Patient-derived OS cell lines (n = 52) were labeled with antibodies to Her-2, PDGFR-ß, IGF-1R, IR, c-Met, and VEGFR-3. Expression was characterized using flow cytometry. The difference in geometric mean fluorescent intensity (geoMFIdiff = geoMFIpositive - geoMFInegative) was calculated for each receptor across all cell lines. Receptor expression was categorized as low (Q1), intermediate (Q2, Q3), or high (Q4). The event-free survival (EFS) and overall survival for the six cell surface receptors were estimated by the Kaplan-Meier method. Differences in hazard for EFS event and overall survival event for patients in each of the three expression levels in each of the six cell surface receptors were assessed using the log-rank test. RESULTS: All 6 receptors were variably expressed in the majority of cell lines. IR and PDGFR-ß expressions were found to be significant predictors for EFS amongst patients with nonmetastatic disease (p=0.02 and 0.01, respectively). The hazard ratio for EFS was significantly higher between high IR and intermediate IR expression (HR = 2.66, p=0.02), as well as between high PDGFR-ß and intermediate PDGFR-ß expression (HR = 5.68, p=0.002). Her-2, c-Met, IGF-1R, and VEGFR-3 were not found to be significant predictors for either EFS or overall survival. CONCLUSION: The six cell surface receptors demonstrated variable expression across the majority of patient-derived OS cell lines tested. Limited prognostic value was offered by IR and PDGFR-ß expression within nonmetastatic patients. The remaining receptors do not provide clear prognostic utility. Nevertheless, their consistent, albeit variable, surface expression across a large panel of patient-derived OS cell lines maintains their potential use as future therapeutic targets.

4.
Transl Oncol ; 13(10): 100809, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32623326

RESUMO

Synovial sarcoma (SS) is an aggressive soft-tissue cancer with a poor prognosis and a propensity for local recurrence and distant metastasis. In this study, we investigated whether S phase kinase-associated protein (Skp2) plays an oncogenic role in tumor initiation, progression, and metastasis of SS. Our study revealed that Skp2 is frequently overexpressed in SS specimens and SS18-SSX transgenic mouse tumors, as well as correlated with clinical stages. Next, we identified that genetic depletion of Skp2 reduced mesenchymal and stemness markers, and inhibited the invasive and proliferative capacities of SS cell lines. Furthermore, Skp2 depletion markedly suppressed the growth of SS xenografts tumors. Treatment of SS cell lines with the skp2 inhibitor flavokawain A (FKA) reduced Skp2 expression in a dose-dependent manner and resulted in cell cycle arrest and apoptosis. FKA also suppressed the invasion and tumor-initiating properties in SS, similar to the effects of Skp2 knockdown. In addition, a combination of FKA and conventional chemotherapy showed a synergistic therapeutic efficacy. Taken together, our results suggest that Skp2 plays an essential role in the biology of SS by promoting the mesenchymal state and cancer stemness. Given that chemotherapy resistance is often associated with cancer stemness, strategies of combining Skp2 inhibitors with conventional chemotherapy in SS may be desirable.

6.
J Biomed Opt ; 22(12): 1-9, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29264893

RESUMO

Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.


Assuntos
Imagem Óptica , Osteossarcoma/diagnóstico por imagem , Análise Espectral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...