Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316520

RESUMO

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Assuntos
Melanoma , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Dano ao DNA , Instabilidade Genômica/genética , DNA
2.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131595

RESUMO

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.

3.
J Pediatr Gastroenterol Nutr ; 60(2): 182-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25625576

RESUMO

OBJECTIVES: Recent data from mainly homogeneous European and African populations implicate a 140-bp region 5' to the transcriptional start site of LCT (the lactase gene) as a regulatory site for lactase persistence and nonpersistence. Because there are no studies of US nonhomogeneous populations, we performed genotype/phenotype analysis of the -13910 and -22018 LCT single nucleotide polymorphisms (SNPs) in New England children, mostly of European ancestry. METHODS: Duodenal biopsies were processed for disaccharidase activities, RNA quantification by reverse transcription polymerase chain reaction (RT-PCR), allelic expression ratios by PCR, and genotyping and SNP analysis. Results were compared with clinical information. RESULTS: Lactase activity and mRNA levels, and sucrase-to-lactase ratios of enzyme activity and mRNA, showed robust correlations with genotype. None of the other LCT SNPs showed as strong a correlation with enzyme or mRNA levels as did -13910. Data were consistent, with the -13910 being the causal sequence variant instead of -22018. Four individuals heterozygous for -13910T/C had allelic expression patterns similar to individuals with -13910C/C genotypes; of these, 2 showed equal LCT expression from the 2 alleles and a novel variant (-13909C>A) associated with lactase persistence. CONCLUSIONS: The identification of -13910C/C genotype is likely to predict lactase nonpersistence, consistent with prior published studies. A -13910T/T genotype will frequently, but not perfectly, predict lactase persistence in this mixed European-ancestry population; a -13910T/C genotype will not predict the phenotype. A long, rare haplotype in 2 individuals with -13910T/C genotype but equal allele-specific expression contains a novel lactase persistence allele present at -13909.


Assuntos
Duodeno/enzimologia , Lactase/genética , Lactase/metabolismo , RNA Mensageiro/metabolismo , População Branca/genética , Adolescente , Alelos , Criança , Duodeno/metabolismo , Feminino , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Sacarase/metabolismo , Estados Unidos/etnologia , Adulto Jovem
4.
Am J Hum Genet ; 77(5): 851-68, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16252243

RESUMO

Our previous research involving 167 nuclear families from the Autism Genetic Resource Exchange (AGRE) demonstrated that two intronic SNPs, rs1861972 and rs1861973, in the homeodomain transcription factor gene ENGRAILED 2 (EN2) are significantly associated with autism spectrum disorder (ASD). In this study, significant replication of association for rs1861972 and rs1861973 is reported for two additional data sets: an independent set of 222 AGRE families (rs1861972-rs1861973 haplotype, P=.0016) and a separate sample of 129 National Institutes of Mental Health families (rs1861972-rs1861973 haplotype, P=.0431). Association analysis of the haplotype in the combined sample of both AGRE data sets (389 families) produced a P value of .0000033, whereas combining all three data sets (518 families) produced a P value of .00000035. Population-attributable risk calculations for the associated haplotype, performed using the entire sample of 518 families, determined that the risk allele contributes to as many as 40% of ASD cases in the general population. Linkage disequilibrium (LD) mapping with the use of polymorphisms distributed throughout the gene has shown that only intronic SNPs are in strong LD with rs1861972 and rs1861973. Resequencing and association analysis of all intronic SNPs have identified alleles associated with ASD, which makes them candidates for future functional analysis. Finally, to begin defining the function of EN2 during development, mouse En2 was ectopically expressed in cortical precursors. Fewer En2-transfected cells than controls displayed a differentiated phenotype. Together, these data provide further genetic evidence that EN2 might act as an ASD susceptibility locus, and they suggest that a risk allele that perturbs the spatial/temporal expression of EN2 could significantly alter normal brain development.


Assuntos
Transtorno Autístico/genética , Proteínas de Homeodomínio/fisiologia , Desequilíbrio de Ligação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transtorno Autístico/fisiopatologia , Técnicas de Cultura de Células , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Haplótipos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Íntrons/genética , Linhagem , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...