Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(4): 101498, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569555

RESUMO

Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.


Assuntos
Neoplasias , Oncostatina M , Qualidade de Vida , Animais , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias/patologia , Oncostatina M/genética , Oncostatina M/metabolismo , Oncostatina M/farmacologia
2.
Nature ; 617(7962): 827-834, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165186

RESUMO

Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.


Assuntos
Caquexia , Atrofia Muscular , Neoplasias , Transdução de Sinais , Receptor Xedar , Animais , Camundongos , Caquexia/complicações , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/patologia , Receptor Xedar/metabolismo , Humanos , Ligantes , Receptores de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Quinase Induzida por NF-kappaB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA