Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(10)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39457556

RESUMO

BACKGROUND: Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl2, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD. METHODS: We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells. RESULTS: This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of IL-10 and TGF-ß by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under H2O2-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells. CONCLUSIONS: TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after H2O2-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.

2.
Curr Issues Mol Biol ; 46(8): 8627-8641, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39194725

RESUMO

Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.

3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731835

RESUMO

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Assuntos
Leucemia Mieloide Aguda , Biologia de Sistemas , Tretinoína , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Tretinoína/farmacologia , Biologia de Sistemas/métodos , Células HL-60 , Perfilação da Expressão Gênica , Células K562 , Descoberta de Drogas/métodos , Transcriptoma , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Biochem Biophys Res Commun ; 709: 149834, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547608

RESUMO

BACKGROUND: Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS: Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 µM or higher, whereas wild-type cells displayed cell death at a concentration of 30 µM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 µM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 µM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS: The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.


Assuntos
Genes p53 , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Cádmio/metabolismo , Queratina-17/genética , Queratina-17/metabolismo , Proteômica , Linhagem Celular , Morte Celular , Queratinócitos/metabolismo , Apoptose/genética
5.
Stem Cell Res Ther ; 14(1): 344, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031182

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS: Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 µg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS: Poly(I:C) at 10 µg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS: TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.


Assuntos
Interleucina-10 , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/genética , Interleucina-2 , Proteômica , Imunossupressores , Anti-Inflamatórios , Antivirais , Ubiquitina Tiolesterase
6.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242945

RESUMO

The objectives of the study were as follows: (1) to develop two methods for the preparation of macroporous composite chitosan/hyaluronic acid (Ch/HA) hydrogels based on covalently cross-linked Ch and low molecular weight (Mw) HA (5 and 30 kDa); (2) to investigate some properties (swelling and in vitro degradation) and structures of the hydrogels; (3) to evaluate the hydrogels in vitro as potential biodegradable matrices for tissue engineering. Chitosan was cross-linked with either genipin (Gen) or glutaraldehyde (GA). Method 1 allowed the distribution of HA macromolecules within the hydrogel (bulk modification). In Method 2, hyaluronic acid formed a polyelectrolyte complex with Ch over the hydrogel surface (surface modification). By varying compositions of the Ch/HA hydrogels, highly porous interconnected structures (with mean pore sizes of 50-450 µm) were fabricated and studied using confocal laser scanning microscopy (CLSM). Mouse fibroblasts (L929) were cultured in the hydrogels for 7 days. Cell growth and proliferation within the hydrogel samples were studied via MTT-assay. The entrapment of low molecular weight HA was found to result in an enhancement of cell growth in the Ch/HA hydrogels compared to that in the Ch matrices. The Ch/HA hydrogels after bulk modification promoted better cell adhesion, growth and proliferation than the samples prepared by using Method 2 (surface modification).

7.
Polymers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850190

RESUMO

In the current study, novel matrices based on chitosan-g-oligo (L,L-/L,D-lactide) copolymers were fabricated. In particular, 2D films were prepared by solvent casting, while 3D macroporous hydrogels were obtained by lyophilization of copolymer solutions. Copolymers of chitosan (Chit) with semi-crystalline oligo (L,L-lactide) (Chit-LL) or amorphous oligo (L,D-lactide) (Chit-LD) were obtained by solid-state mechanochemical synthesis. The structure of the hydrogels was found to be a system of interconnected macropores with an average size of 150 µm. In vitro degradation of these copolymer-based matrices was shown to increase in the case of the Chit-LL-based hydrogel by 34% and decrease for the Chit-LD-based hydrogel by 23% compared to the parameter of the Chit sample. Localization and distribution of mouse fibroblast L929 cells and adipose tissue-derived mesenchymal stromal cells (MSCs) within the hydrogels was studied by confocal laser scanning microscopy (CLSM). Moreover, cellular response, namely cell adhesion, spreading, growth, proliferation, as well as cell differentiation in vitro were also evaluated in the hydrogels for 10-14 days. Both the Chit-LL and Chit-LD matrices were shown to support cell growth and proliferation, while they had improved swelling compared to the Chit matrix. Osteogenic MSCs differentiation on the copolymer-based films was studied by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Maximal expression levels of osteogenesis markers (alkaline phosphatase (ALPL), bone transcription factor (Runx2), and osteopontin (SPP1) were revealed for the Chit-LD films. Thus, osteodifferentiation was demonstrated to depend on the film composition. Both Chit-LL and Chit-LD copolymer-based matrices are promising for tissue engineering.

8.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291090

RESUMO

Studies of induced granulocytic differentiation help to reveal molecular mechanisms of cell maturation. The nuclear proteome represents a rich source of regulatory molecules, including transcription factors (TFs). It is important to have an understanding of molecular perturbations at the early stages of the differentiation processes. By applying the proteomic quantitative profiling using isobaric labeling, we found that the contents of 214, 319, 376, 426, and 391 proteins were altered at 3, 6, 9, 12, and 72 h, respectively, compared to 0 h in the HL-60 cell nuclear fraction under all-trans-retinoid acid (ATRA) treatment. From 1860 identified nuclear proteins, 231 proteins were annotated as proteins with transcription factor (TF) activity. Six TFs (RREB1, SRCAP, CCDC124, TRIM24, BRD7, and BUD31) were downregulated and three TFs EWSR1, ENO1, and FUS were upregulated at early time points (3-12 h) after ATRA treatment. Bioinformatic annotation indicates involvement of the HL-60 nuclear proteome in DNA damage recognition in the RUNX1-triggered pathway, and in the p53-regulation pathway. By applying scheduled multiple reaction monitoring using stable isotopically labeled peptide standards (MRM/SIS), we found a persistent increase in the content of the following proteins: PRAM1, CEPBP, RBPJ, and HIC1 in the HL-60 cell nuclear fraction during ATRA-induced granulocytic differentiation. In the case of STAT1, CASP3, PARP1, and PRKDC proteins, a transient increase in their content was observed at early time points (3-12 h) after the ATRA treatment. Obtained data on nuclear proteome composition and dynamics during granulocytic differentiation could be beneficial for the development of new treatment approaches for leukemias with the mutated p53 gene.


Assuntos
Núcleo Celular , Granulócitos , Leucemia Promielocítica Aguda , Proteínas Nucleares , Proteoma , Humanos , Caspase 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteômica , Tretinoína/farmacologia , Tretinoína/metabolismo , Proteína Supressora de Tumor p53/genética , Células HL-60 , Granulócitos/metabolismo , Granulócitos/patologia , Núcleo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...