RESUMO
BACKGROUND: Climate change is widely recognised to threaten human health, wellbeing and livelihoods, including through its effects on the emergence, spread and burdens of climate-and water-sensitive infectious diseases. However, the scale and mechanisms of the impacts are uncertain and it is unclear whether existing forecasting capacities will foster successful local-level adaptation planning, particularly in climate vulnerable regions in developing countries. The purpose of this scoping review was to characterise and map priority climate- and water-sensitive diseases, map existing forecasting and surveillance systems in climate and health sectors and scope out the needs and potential to develop integrated climate-driven early warning forecasting systems for long-term adaptation planning and interventions in the south Asia region. METHODS: We searched Web of Science Core Collection, Scopus and PubMed using title, abstract and keywords only for papers focussing on climate-and water-sensitive diseases and explicit mention of either forecasting or surveillance systems in south Asia. We conducted further internet search of relevant national climate adaptation plans and health policies affecting disease management. We identified 187 studies reporting on climate-sensitive diseases and information systems in the south Asia context published between 1992 and 2024. RESULTS: We found very few robust, evidenced-based forecasting systems for climate- and water- sensitive infectious diseases, which suggests limited operationalisation of decision-support tools that could inform actions to reduce disease burdens in the region. Many of the information systems platforms identified focussed on climate-sensitive vector-borne disease systems, with limited tools for water-sensitive diseases. This reveals an opportunity to develop tools for these neglected disease groups. Of the 34 operational platforms identified across the focal countries, only 13 (representing 38.2%) are freely available online and all were developed and implemented by the human health sector. Tools are needed for other south Asian countries (Afghanistan, Sri Lanka, Bhutan) where the risks of infectious diseases are predicted to increase substantially due to climate change, drought and shifts in human demography and use of ecosystems. CONCLUSION: Altogether, the findings highlight clear opportunities to invest in the co-development and implementation of contextually relevant climate-driven early warning tools and research priorities for disease control and adaptation planning.
Assuntos
Mudança Climática , Previsões , Humanos , Ásia/epidemiologia , Previsões/métodos , Ásia MeridionalRESUMO
BACKGROUND: Traditional medicine (TM) interventions are plausible therapeutic alternatives to conventional medical interventions against emerging and endemic zoonotic diseases, particularly in low-and middle-income countries that may lack resources and infrastructure. Despite the growing popularity in the usage of TM interventions, their clinical safety and effectiveness are still contested within conventional healthcare in many countries. METHODS: We conducted a scoping review of the peer-reviewed literature that synthesises and maps the evidence on TM interventions for the treatment and prevention of zoonoses on the Indian subcontinent. The region, a global hotspot of biodiversity and emerging infections, is characterised by high prevalence of TM use. Based on the scientific literature (mostly case study research, n=l06 studies), our review (1) maps the scope of the literature, (2) synthesises the evidence on the application of TM interventions for zoonoses, and (3) critically reflects on the state of TM and identifies areas for future research focus. RESULTS: The evidence synthesis confirmed widespread usage of TM interventions for zoonoses on the subcontinent, with the majority of research reported from India (n=99 studies, 93.4%), followed by Pakistan (n=3 studies, 2.8%), Bangladesh (n=2 studies, 1.9%), and Sri Lanka (n=1, 0.9%). Most of the reviewed studies reported on ethno-medicinal uses of plant species, primarily for treating dengue (n=20 studies), tuberculosis (n=18 studies), Escherichia coli infection (n=16 studies), lymphatic filariasis and cholera (n=9 apiece). However, the evidence on the safety and effectiveness of these reported TM interventions is limited, indicating that these data are rarely collected and/or shared within the peer-reviewed literature. CONCLUSION: This review thus highlights that, whilst TMs are already being used and could offer more widely accessible interventions against emerging and endemic zoonoses and ectoparasites, there is an urgent need for rigorous clinical testing and validation of the safety and effectiveness of these interventions.