Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8498, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353946

RESUMO

Polycystic ovary syndrome (PCOS) is a heterogeneous condition, defined by oligo-/anovulation, hyper-androgenism and/or polycystic ovaries. Metabolic complications are common in patients suffering PCOS, including obesity, insulin resistance and type-2 diabetes, which severely compromise the clinical course of affected women. Yet, therapeutic options remain mostly symptomatic and of limited efficacy for the metabolic and reproductive alterations of PCOS. We report here the hormonal, metabolic and gonadal responses to the glucagon-like peptide-1 (GLP1)-based multi-agonists, GLP1/Estrogen (GLP1/E), GLP1/gastric inhibitory peptide (GLP1/GIP) and GLP1/GIP/Glucagon, in two mouse PCOS models, with variable penetrance of metabolic and reproductive traits, and their comparison with metformin. Our data illustrate the superior efficacy of GLP1/E vs. other multi-agonists and metformin in the management of metabolic complications of PCOS; GLP1/E ameliorates also ovarian cyclicity in an ovulatory model of PCOS, without direct estrogenic uterotrophic effects. In keeping with GLP1-mediated brain targeting, quantitative proteomics reveals changes in common and distinct hypothalamic pathways in response to GLP1/E between the two PCOS models, as basis for differential efficiency. Altogether, our data set the basis for the use of GLP1-based multi-agonists, and particularly GLP1/E, in the personalized management of PCOS.


Assuntos
Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon , Metformina , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Feminino , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Metformina/uso terapêutico , Metformina/farmacologia , Camundongos , Humanos , Polipeptídeo Inibidor Gástrico/metabolismo , Estrogênios/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Resistência à Insulina , Camundongos Endogâmicos C57BL
2.
J Neuroendocrinol ; 36(10): e13433, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39041546

RESUMO

Kisspeptins are essential regulators of the reproductive axis, with capacity to potently activate gonadotropin-releasing hormone neurons, acting also as central conduits for the metabolic regulation of fertility. Recent evidence suggests that kisspeptins per se may also modulate several metabolic parameters, including body weight, food intake or energy expenditure, but their actual roles and site(s) of action remain unclear. We present herein a series of studies addressing the metabolic effects of central and peripheral administration of kisspeptin-10 (Kp-10; 1 nmol and 3 nmol daily, respectively) for 11 days in mice of both sexes. To assess direct metabolic actions of Kp-10 versus those derived indirectly from its capacity to modulate gonadal hormone secretion, kisspeptin effects were tested in adult male and female mice gonadectomized and supplemented with fixed, physiological doses of testosterone or 17ß-estradiol, respectively. Central administration of Kp-10 decreased food intake in male mice, especially during the dark phase (~50%), which was accompanied by a reduction in total and nocturnal energy expenditure (~16%) and locomotor activity (~70%). In contrast, opposite patterns were detected in female mice, with an increase in total and nocturnal locomotor activity (>65%), despite no changes in food intake or energy expenditure. These changes were independent of body weight, as no differences were detected in mice of both sexes at the end of Kp-10 treatments. Peripheral administration of Kp-10 failed to alter any of the metabolic parameters analyzed, except for a decrease in locomotor activity in male mice and a subtle increase in 24 h food intake in female mice, denoting a predominant central role of kisspeptins in the control of energy metabolism. Finally, glucose tolerance and insulin sensitivity were not significantly affected by central or peripheral treatment with Kp-10. In conclusion, our data reveal a potential role of kisspeptins in the control of key metabolic parameters, including food intake, energy expenditure and locomotor activity, with a preferential action at central level, which is sex steroid-independent but sexually dimorphic.


Assuntos
Ingestão de Alimentos , Metabolismo Energético , Kisspeptinas , Caracteres Sexuais , Animais , Masculino , Feminino , Kisspeptinas/metabolismo , Kisspeptinas/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Camundongos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Estradiol/farmacologia , Testosterona/farmacologia , Testosterona/metabolismo , Camundongos Endogâmicos C57BL , Hormônios Esteroides Gonadais/farmacologia , Hormônios Esteroides Gonadais/metabolismo
3.
J Clin Invest ; 134(15)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861336

RESUMO

Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-ß occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.


Assuntos
Astrócitos , Hormônio Liberador de Gonadotropina , Kisspeptinas , Camundongos Knockout , Receptores de Kisspeptina-1 , Transdução de Sinais , Kisspeptinas/metabolismo , Kisspeptinas/genética , Animais , Astrócitos/metabolismo , Camundongos , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Humanos , Ratos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Masculino , Hipotálamo/metabolismo , Neurônios/metabolismo , Dinoprostona/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Reprodução
4.
Proc Natl Acad Sci U S A ; 120(51): e2310053120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096412

RESUMO

Systemic infections can yield distinct outcomes in different tissues. In mice, intravenous inoculation of Escherichia coli leads to bacterial replication within liver abscesses, while other organs such as the spleen clear the pathogen. Abscesses are macroscopic necrotic regions that comprise the vast majority of the bacterial burden in the animal, yet little is known about the processes underlying their formation. Here, we characterize E. coli liver abscesses and identify host determinants of abscess susceptibility. Spatial transcriptomics revealed that liver abscesses are associated with heterogenous immune cell clusters comprised of macrophages, neutrophils, dendritic cells, innate lymphoid cells, and T-cells that surround necrotic regions of the liver. Abscess susceptibility is heightened in the C57BL lineage, particularly in C57BL/6N females. Backcross analyses demonstrated that abscess susceptibility is a polygenic trait inherited in a sex-dependent manner without direct linkage to sex chromosomes. As early as 1 d post infection, the magnitude of E. coli replication in the liver distinguishes abscess-susceptible and abscess-resistant strains of mice, suggesting that the immune pathways that regulate abscess formation are induced within hours. We characterized the early hepatic response with single-cell RNA sequencing and found that mice with reduced activation of early inflammatory responses, such as those lacking the LPS receptor TLR4 (Toll-like receptor 4), are resistant to abscess formation. Experiments with barcoded E. coli revealed that TLR4 mediates a tradeoff between abscess formation and bacterial clearance. Together, our findings define hallmarks of E. coli liver abscess formation and suggest that hyperactivation of the hepatic innate immune response drives liver abscess susceptibility.


Assuntos
Infecções por Escherichia coli , Abscesso Hepático , Feminino , Camundongos , Animais , Escherichia coli/metabolismo , Receptor 4 Toll-Like/metabolismo , Imunidade Inata/genética , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Abscesso Hepático/genética
5.
Metabolism ; 144: 155556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121307

RESUMO

BACKGROUND: Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS: To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS: TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS: Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT: Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.


Assuntos
Gonadotropinas , Kisspeptinas , Masculino , Feminino , Camundongos , Humanos , Animais , Kisspeptinas/genética , Neurônios/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Fertilidade
6.
EBioMedicine ; 90: 104484, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36907105

RESUMO

BACKGROUND: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS: An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS: Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFß-pathways). Interestingly, an enrichment analysis uncovered a TGFß-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION: Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING: Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).


Assuntos
Glioblastoma , Inibidores de Hidroximetilglutaril-CoA Redutases , Metformina , Humanos , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos Retrospectivos , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
7.
Metabolites ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34940594

RESUMO

Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.

8.
Eur J Endocrinol ; 185(5): 637-652, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403358

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is diagnosed based on the clinical signs, but its presentation is heterogeneous and potentially confounded by concurrent conditions, such as obesity and insulin resistance. miRNA have recently emerged as putative pathophysiological and diagnostic factors in PCOS. However, no reliable miRNA-based method for molecular diagnosis of PCOS has been reported. The aim of this study was to develop a tool for accurate diagnosis of PCOS by targeted miRNA profiling of plasma samples, defined on the basis of unbiased biomarker-finding analyses and biostatistical tools. METHODS: A case-control PCOS cohort was cross-sectionally studied, including 170 women classified into four groups: non-PCOS/lean, non-PCOS/obese, PCOS/lean, and PCOS/obese women. High-throughput miRNA analyses were performed in plasma, using NanoString technology and a 800 human miRNA panel, followed by targeted quantitative real-timePCR validation. Statistics were applied to define optimal normalization methods, identify deregulated biomarker miRNAs, and build classification algorithms, considering PCOS and obesity as major categories. RESULTS: The geometric mean of circulating hsa-miR-103a-3p, hsa-miR-125a-5p, and hsa-miR-1976, selected among 125 unchanged miRNAs, was defined as optimal reference for internal normalization (named mR3-method). Ten miRNAs were identified and validated after mR3-normalization as differentially expressed across the groups. Multinomial least absolute shrinkage and selection operator regression and decision-tree models were built to reliably discriminate PCOS vs non-PCOS, either in obese or non-obese women, using subsets of these miRNAs as performers. CONCLUSIONS: We define herein a robust method for molecular classification of PCOS based on unbiased identification of miRNA biomarkers and decision-tree protocols. This method allows not only reliable diagnosis of non-obese women with PCOS but also discrimination between PCOS and obesity. CAPSULE: We define a novel protocol, based on plasma miRNA profiling, for molecular diagnosis of PCOS. This tool not only allows proper discrimination of the condition in non-obese women but also permits distinction between PCOS and obesity, which often display overlapping clinical presentations.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/sangue , MicroRNAs/genética , Obesidade/etiologia , Obesidade/genética , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/genética , Adolescente , Adulto , Algoritmos , Biomarcadores , Estudos de Casos e Controles , Estudos de Coortes , Biologia Computacional , Estudos Transversais , Árvores de Decisões , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Reprodutibilidade dos Testes , Adulto Jovem
9.
Am J Physiol Endocrinol Metab ; 320(3): E496-E511, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427049

RESUMO

Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.


Assuntos
Receptores da Neurocinina-2/genética , Reprodução/genética , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores da Neurocinina-2/deficiência , Reprodução/fisiologia , Transdução de Sinais/genética , Transcriptoma
10.
Cell Metab ; 32(6): 951-966.e8, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080217

RESUMO

Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.


Assuntos
Ceramidas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovário/metabolismo , Obesidade Infantil , Puberdade Precoce , Animais , Feminino , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Puberdade Precoce/etiologia , Puberdade Precoce/metabolismo , Ratos Wistar
11.
Metabolism ; 98: 84-94, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226351

RESUMO

BACKGROUND: Kisspeptins, encoded by Kiss1, have emerged as essential regulators of puberty and reproduction by primarily acting on GnRH neurons, via their canonical receptor, Gpr54. Mounting, as yet fragmentary, evidence strongly suggests that kisspeptin signaling may also participate in the control of key aspects of body energy and metabolic homeostasis. However, characterization of such metabolic dimension of kisspeptins remains uncomplete, without an unambiguous discrimination between the primary metabolic actions of kisspeptins vs. those derived from their ability to stimulate the secretion of gonadal hormones, which have distinct metabolic actions on their own. In this work, we aimed to tease apart primary vs. secondary effects of kisspeptins in the control of key aspects of metabolic homeostasis using genetic models of impaired kisspeptin signaling and/or gonadal hormone status. METHODS: Body weight (BW) gain and composition, food intake and key metabolic parameters, including glucose tolerance, were comparatively analyzed, in lean and obesogenic conditions, in mice lacking kisspeptin signaling due to global inactivation of Gpr54 (displaying profound hypogonadism; Gpr54-/-) vs. Gpr54 null mice with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54-/-Tg), where kisspeptin signaling elsewhere than in GnRH neurons is ablated but gonadal function is preserved. RESULTS: In male mice, global elimination of kisspeptin signaling resulted in decreased BW, feeding suppression and increased adiposity, without overt changes in glucose tolerance, whereas Gpr54-/- female mice displayed enhanced BW gain at adulthood, increased adiposity and perturbed glucose tolerance, despite reduced food intake. Gpr54-/-Tg rescued mice showed altered postnatal BW gain in males and mildly perturbed glucose tolerance in females, with intermediate phenotypes between control and global KO animals. Yet, body composition and leptin levels were similar to controls in gonadal-rescued mice. Exposure to obesogenic insults, such as high fat diet (HFD), resulted in exaggerated BW gain and adiposity in global Gpr54-/- mice of both sexes, and worsening of glucose tolerance, especially in females. Yet, while rescued Gpr54-/-Tg males displayed intermediate BW gain and feeding profiles and impaired glucose tolerance, rescued Gpr54-/-Tg females behaved as controls, except for a modest deterioration of glucose tolerance after ovariectomy. CONCLUSION: Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Kisspeptins, master regulators of reproduction, may also participate in the control of key aspects of body energy and metabolic homeostasis; yet, the nature of such metabolic actions remains debatable, due in part to the fact that kisspeptins modulate gonadal hormones, which have metabolic actions on their own. By comparing the metabolic profiles of two mouse models with genetic inactivation of kisspeptin signaling but different gonadal status (hypogonadal vs. preserved gonadal function), we provide herein a systematic dissection of gonadal-dependent vs. -independent metabolic actions of kisspeptins. Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. These data pave the way for future analyses addressing the eventual contribution of altered kisspeptin signaling in the development of metabolic alterations, especially in conditions linked to reproductive dysfunction.


Assuntos
Peso Corporal/fisiologia , Hormônios Gonadais/fisiologia , Homeostase/fisiologia , Kisspeptinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Dieta , Ingestão de Alimentos , Feminino , Intolerância à Glucose/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Ovariectomia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Aumento de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...