Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(24): 242501, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563248

RESUMO

A novel pathway for the formation of multiparticle-multihole excited states in rare isotopes is reported from highly energy- and momentum-dissipative inelastic-scattering events measured in reactions of an intermediate-energy beam of ^{38}Ca on a Be target. The negative-parity, complex-structure final states in ^{38}Ca are observed following the in-beam γ-ray spectroscopy of events in the ^{9}Be(^{38}Ca,^{38}Ca+γ)X reaction in which the scattered projectile loses longitudinal momentum of order Δp_{||}=700 MeV/c. The characteristics of the observed final states are discussed and found to be consistent with the formation of excited states involving the rearrangement of multiple nucleons in a single, highly energetic projectile-target collision. Unlike the far-less-dissipative, surface-grazing reactions usually exploited for the in-beam γ-ray spectroscopy of rare isotopes, these more energetic collisions appear to offer a practical pathway to nuclear-structure studies of more complex multiparticle configurations in rare isotopes-final states conventionally thought to be out of reach with high-luminosity fast-beam-induced reactions.

3.
Phys Rev Lett ; 124(15): 152502, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357034

RESUMO

Detailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from ^{29}Ne/^{29}F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the ^{27}F^{(*)}+n and ^{26}F^{(*)}+2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with S_{n}(^{28}F)=-199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S_{n}(^{27}F)=1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of ^{28}F. Importantly, in the case of the ground state, the reconstructed ^{27}F+n momentum distribution following neutron removal from ^{29}F indicates that it arises mainly from the 1p_{3/2} neutron intruder configuration. This demonstrates that the island of inversion around N=20 includes ^{28}F, and most probably ^{29}F, and suggests that ^{28}O is not doubly magic.

4.
Phys Rev Lett ; 124(2): 022501, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004026

RESUMO

Spectroscopic factors of neutron-hole and proton-hole states in ^{131}Sn and ^{131}In, respectively, were measured using one-nucleon removal reactions from doubly magic ^{132}Sn at relativistic energies. For ^{131}In, a 2910(50)-keV γ ray was observed for the first time and tentatively assigned to a decay from a 5/2^{-} state at 3275(50) keV to the known 1/2^{-} level at 365 keV. The spectroscopic factors determined for this new excited state and three other single-hole states provide first evidence for a strong fragmentation of single-hole strength in ^{131}Sn and ^{131}In. The experimental results are compared to theoretical calculations based on the relativistic particle-vibration coupling model and to experimental information for single-hole states in the stable doubly magic nucleus ^{208}Pb.

5.
Phys Rev Lett ; 122(22): 222501, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283300

RESUMO

A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus ^{42}Si-going beyond earlier comparisons of excited-state energies-is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying ^{42}Si(2_{1}^{+}) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich ^{42}Si with a one-proton removal reaction from ^{43}P projectiles at 81 MeV/nucleon. The measured cross sections to the individual ^{42}Si final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0^{+} states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13) keV in ^{42}Si is proposed to be the (0_{2}^{+}) level.

6.
Phys Rev Lett ; 119(15): 159901, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077470

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.117.162502.

7.
Phys Rev Lett ; 118(20): 202502, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581778

RESUMO

Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4) MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global ß-decay properties for astrophysical simulations may have to be reconsidered.

8.
Phys Rev Lett ; 118(17): 172501, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498679

RESUMO

The (^{10}Be,^{10}B^{*}[1.74 MeV]) charge-exchange reaction at 100 AMeV is presented as a new probe for isolating the isovector (ΔT=1) nonspin-transfer (ΔS=0) response of nuclei, with ^{28}Si being the first nucleus studied. By using a secondary ^{10}Be beam produced by fast fragmentation of ^{18}O nuclei at the NSCL Coupled Cyclotron Facility, applying the dispersion-matching technique with the S800 magnetic spectrometer to determine the excitation energy in ^{28}Al, and performing high-resolution γ-ray tracking with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA) to identify the 1022-keV γ ray associated with the decay from the 1.74-MeV T=1 isobaric analog state in ^{10}B, a ΔS=0 excitation-energy spectrum in ^{28}Al was extracted. Monopole and dipole contributions were determined through a multipole-decomposition analysis, and the isovector giant dipole resonance and isovector giant monopole resonance (IVGMR) were identified. The results show that this probe is a powerful tool for studying the elusive IVGMR, which is of interest for performing stringent tests of modern density functional theories at high excitation energies and for constraining the bulk properties of nuclei and nuclear matter. The extracted distributions were compared with theoretical calculations based on the normal-modes formalism and the proton-neutron relativistic time-blocking approximation. Calculated cross sections based on these strengths underestimate the data by about a factor of 2, which likely indicates deficiencies in the reaction calculations based on the distorted wave Born approximation.

9.
Phys Rev Lett ; 117(16): 162502, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792383

RESUMO

Theoretical models of low-energy (d, p) single-neutron transfer reactions are a crucial link between experimentation, nuclear structure, and nuclear astrophysical studies. Whereas reaction models that use local optical potentials are insensitive to short-range physics in the deuteron, we show that including the inherent nonlocality of the nucleon-target interactions and realistic deuteron wave functions generates significant sensitivity to high n-p relative momenta and to the underlying nucleon-nucleon interaction. We quantify this effect upon the deuteron channel distorting potentials within the framework of the adiabatic deuteron breakup model. The implications for calculated (d, p) cross sections and spectroscopic information deduced from experiments are discussed.

10.
Phys Rev Lett ; 117(8): 082502, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588851

RESUMO

One-neutron knockout reactions have been performed on a beam of radioactive ^{53}Co in a high-spin isomeric state. The analysis is shown to yield a highly selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 11^{+} band-termination state, of the proton-rich nucleus ^{52}Co (Z=27, N=25). This has in turn enabled a study of mirror energy differences in the A=52 odd-odd mirror nuclei, interpreted in terms of isospin-nonconserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J-dependent INC terms to explain the experimental observations.

11.
Phys Rev Lett ; 116(12): 122502, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058074

RESUMO

The lifetimes of the first excited 2^{+} and 4^{+} states in ^{72}Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in ^{72}Ni were populated by the one-proton knockout reaction of an intermediate energy ^{73}Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2^{+}→0^{+}) as compared to ^{68}Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope ^{70}Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 4_{1}^{+} state is consistent with models showing decay of a seniority ν=4, 4^{+} state, which is consistent with the disappearance of the 8^{+} isomer in ^{72}Ni.

12.
Phys Rev Lett ; 115(6): 062701, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296114

RESUMO

In Wolf-Rayet and asymptotic giant branch (AGB) stars, the (26g)Al(p,γ)(27)Si reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus (26)Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the (26g)Al(d,p)(27)Al reaction as a method for constraining the strengths of key astrophysical resonances in the (26g)Al(p,γ)(27)Si reaction. In particular, the results indicate that the resonance at E(r)=127 keV in (27)Si determines the entire (26g)Al(p,γ)(27)Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.

13.
Phys Rev Lett ; 112(24): 242501, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996084

RESUMO

Cross sections of 1n-removal reactions from the neutron-rich nucleus (37)Mg on C and Pb targets and the parallel momentum distributions of the (37)Mg residues from the C target have been measured at 240 MeV/nucleon. A combined analysis of these distinct nuclear- and Coulomb-dominated reaction data shows that the (37)Mg ground state has a small 1n separation energy of 0.22(-0.09)(+0.12) MeV and an appreciable p-wave neutron single-particle strength. These results confirm that (37)Mg lies near the edge of the "island of inversion" and has a sizable p-wave neutron halo component, the heaviest such system identified to date.

14.
Phys Rev Lett ; 112(11): 112503, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702356

RESUMO

Excited states in the neutron-rich N = 38, 36 nuclei (60)Ti and (58)Ti were populated in nucleon-removal reactions from (61)V projectiles at 90 MeV/nucleon. The γ-ray transitions from such states in these Ti isotopes were detected with the advanced γ-ray tracking array GRETINA and were corrected event by event for large Doppler shifts (v/c ∼ 0.4) using the γ-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N = 36, 38 Fe and Cr toward the Ti and Ca isotones. In fact, (58,60)Ti provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly magic nucleus (60)Ca.

15.
Phys Rev Lett ; 112(14): 142501, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765946

RESUMO

The halo structure of 31Ne is studied using 1n-removal reactions on C and Pb targets at 230 MeV/nucleon. A combined analysis of the cross sections of these nuclear and Coulomb dominated reactions that feed directly the 30Ne ground-state reveals 31Ne to have a small neutron separation energy, 0.15(-0.10)(+0.16) MeV, and spin-parity 3/2-. Consistency of the data with reaction and large-scale shell-model calculations identifies 31Ne as deformed and having a significant p-wave halo component, suggesting that halos are more frequent occurrences at the neutron drip line.

16.
Phys Rev Lett ; 111(7): 072501, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992059

RESUMO

The first spectroscopy of excited states in 52Ni (T(z)=-2) and 51Co (T(z)=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.

17.
Phys Rev Lett ; 109(20): 202505, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215478

RESUMO

We report final-state-exclusive measurements of the light charged fragments in coincidence with (26)Ne residual nuclei following the direct two-proton removal from a neutron-rich (28)Mg secondary beam. A Dalitz-plot analysis and comparisons with simulations show that a majority of the triple-coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially correlated pair-removal mechanism. The fraction of such correlated events, 56(12)%, is consistent with the fraction of the calculated cross section, 64%, arising from spin S=0 two-proton configurations in the entrance-channel (shell-model) (28)Mg ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.

18.
Phys Rev Lett ; 106(16): 162502, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599362

RESUMO

Absolute cross sections have been determined following single neutron knockout reactions from 10Be and 10C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for 10Be and by 40% to 50% for 10C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

19.
Phys Rev Lett ; 102(23): 232501, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658928

RESUMO

We report the first detailed study of the relative importance of the stripping and diffraction mechanisms involved in nucleon knockout reactions, by the use of a coincidence measurement of the residue and fast proton following one-proton knockout reactions. The measurements used the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results for the reactions 9Be(9C,8B+X)Y and 9Be(8B,7Be+X)Y are presented and compared with theoretical predictions for the two reaction mechanisms calculated using the eikonal model. The data show a clear distinction between the stripping and diffraction mechanisms and the measured relative proportions are very well reproduced by the reaction theory. This agreement adds support to the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.

20.
Phys Rev Lett ; 102(13): 132502, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392350

RESUMO

Sudden single-nucleon removal reactions from fast radioactive beams are now key to studies of the structure of rare isotopes. The sensitivity of the heavy residue's parallel momentum distribution to the orbital angular momentum of the removed nucleon is a crucial feature with a high spectroscopic value. Two-nucleon removal reactions provide experimental reach toward the rarest nuclear species. We show that the residue parallel momentum distributions in these reactions offer a clear spectroscopic signal of the angular momentum of the pair of nucleons removed, and thus of the residue final state spins and spectroscopy. Our formalism is applied successfully to new final-state-inclusive measurements of like-nucleon pair removal reactions to states in neutron-rich 36Mg and neutron-deficient 20Mg. We also confront a new final-state-exclusive decomposition of two-proton knockout data to states in neutron-rich 26Ne.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...