Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(4): 669-673, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571430

RESUMO

SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.


Assuntos
Neoplasias , Neurociências , Humanos , Sistema Nervoso Central , Previsões , Proteômica
2.
Cancer Cell ; 42(4): 646-661.e9, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38428412

RESUMO

Cellular senescence can exert dual effects in tumors, either suppressing or promoting tumor progression. The senescence-associated secretory phenotype (SASP), released by senescent cells, plays a crucial role in this dichotomy. Consequently, the clinical challenge lies in developing therapies that safely enhance senescence in cancer, favoring tumor-suppressive SASP factors over tumor-promoting ones. Here, we identify the retinoic-acid-receptor (RAR) agonist adapalene as an effective pro-senescence compound in prostate cancer (PCa). Reactivation of RARs triggers a robust senescence response and a tumor-suppressive SASP. In preclinical mouse models of PCa, the combination of adapalene and docetaxel promotes a tumor-suppressive SASP that enhances natural killer (NK) cell-mediated tumor clearance more effectively than either agent alone. This approach increases the efficacy of the allogenic infusion of human NK cells in mice injected with human PCa cells, suggesting an alternative therapeutic strategy to stimulate the anti-tumor immune response in "immunologically cold" tumors.


Assuntos
Senescência Celular , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Receptores do Ácido Retinoico , Células Matadoras Naturais , Adapaleno
3.
PLoS One ; 18(10): e0292483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796964

RESUMO

Prostate cancer is a leading cause of cancer-related deaths in men in the United States. Although treatable when detected early, prostate cancer commonly transitions to an aggressive castration-resistant metastatic state. While taxane chemotherapeutics such as docetaxel are mainstay treatment options for prostate cancer, taxane resistance often develops. Fatty acid binding protein 5 (FABP5) is an intracellular lipid chaperone that is upregulated in advanced prostate cancer and is implicated as a key driver of its progression. The recent demonstration that FABP5 inhibitors produce synergistic inhibition of tumor growth when combined with taxane chemotherapeutics highlights the possibility that FABP5 may regulate other features of taxane function, including resistance. Employing taxane-resistant DU145-TXR cells and a combination of cytotoxicity, apoptosis, and cell cycle assays, our findings demonstrate that FABP5 knockdown sensitizes the cells to docetaxel. In contrast, docetaxel potency was unaffected by FABP5 knockdown in taxane-sensitive DU145 cells. Taxane-resistance in DU145-TXR cells stems from upregulation of the P-glycoprotein ATP binding cassette subfamily B member 1 (ABCB1). Expression analyses and functional assays confirmed that FABP5 knockdown in DU145-TXR cells markedly reduced ABCB1 expression and activity, respectively. Our study demonstrates a potential new function for FABP5 in regulating taxane sensitivity and the expression of a major P-glycoprotein efflux pump in prostate cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Taxoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a Ácido Graxo/genética
4.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460872

RESUMO

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Células Mieloides/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismo
5.
Anal Chem ; 95(13): 5661-5670, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36952386

RESUMO

Imaging defined aspects of functional tumor biology with bioluminescent reporter transgenes is a popular approach in preclinical drug development as it is sensitive, relatively high-throughput and low cost. However, the lack of internal controls subject functional bioluminescence to a number of unpredictable variables that reduce this powerful tool to semi-quantitative interpretation of large-scale effects. Here, we report the generation of sensitive and quantitative live reporters for two key measures of functional cancer biology and pharmacologic stress: the cell cycle and oxidative stress. We developed a two-colored readout, where two independent enzymes convert a common imaging substrate into spectrally distinguishable light. The signal intensity of one color is dependent upon the biological state, whereas the other color is constitutively expressed. The ratio of emitted colored light corrects the functional signal for independent procedural variables, substantially improving the robustness and interpretation of relatively low-fold changes in functional signal intensity after drug treatment. The application of these readouts in vitro is highly advantageous, as peak cell response to therapy can now be readily visualized for single or combination treatments and not simply assessed at an arbitrary and destructive timepoint. Spectral imaging in vivo can be challenging, but we also present evidence to show that the reporters can work in this context as well. Collectively, the development and validation of these internally controlled reporters allow researchers to robustly and dynamically visualize tumor cell biology in response to treatment. Given the prevalence of bioluminescence imaging, this presents significant and much needed opportunities for preclinical therapeutic development.

6.
Mol Oncol ; 17(6): 1007-1023, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36461911

RESUMO

While organ-confined prostate cancer (PCa) is mostly therapeutically manageable, metastatic progression of PCa remains an unmet clinical challenge. Resistance to anoikis, a form of cell death initiated by cell detachment from the surrounding extracellular matrix, is one of the cellular processes critical for PCa progression towards aggressive disease. Therefore, further understanding of anoikis regulation in PCa might provide therapeutic opportunities. Here, we discover that PCa tumours with concomitant inhibition of two tumour suppressor phosphatases, PP2A and PTEN, are particularly aggressive, having < 50% 5-year secondary-therapy-free patient survival. Functionally, overexpression of PME-1, a methylesterase for the catalytic PP2A-C subunit, inhibits anoikis in PTEN-deficient PCa cells. In vivo, PME-1 inhibition increased apoptosis in in ovo PCa tumour xenografts, and attenuated PCa cell survival in zebrafish circulation. Molecularly, PME-1-deficient PC3 cells display increased trimethylation at lysines 9 and 27 of histone H3 (H3K9me3 and H3K27me3), a phenotype known to correlate with increased apoptosis sensitivity. In summary, our results demonstrate that PME-1 supports anoikis resistance in PTEN-deficient PCa cells. Clinically, these results identify PME-1 as a candidate biomarker for a subset of particularly aggressive PTEN-deficient PCa.


Assuntos
Anoikis , Hidrolases de Éster Carboxílico , Neoplasias da Próstata , Animais , Humanos , Masculino , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , PTEN Fosfo-Hidrolase/genética , Peixe-Zebra , Hidrolases de Éster Carboxílico/genética
7.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201488

RESUMO

Resistance to standard of care taxane and androgen deprivation therapy (ADT) causes the vast majority of prostate cancer (PC) deaths worldwide. We have developed RapidCaP, an autochthonous genetically engineered mouse model of PC. It is driven by the loss of PTEN and p53, the most common driver events in PC patients with life-threatening diseases. As in human ADT, surgical castration of RapidCaP animals invariably results in disease relapse and death from the metastatic disease burden. Fatty Acid Binding Proteins (FABPs) are a large family of signaling lipid carriers. They have been suggested as drivers of multiple cancer types. Here we combine analysis of primary cancer cells from RapidCaP (RCaP cells) with large-scale patient datasets to show that among the 10 FABP paralogs, FABP5 is the PC-relevant target. Next, we show that RCaP cells are uniquely insensitive to both ADT and taxane treatment compared to a panel of human PC cell lines. Yet, they share an exquisite sensitivity to the small-molecule FABP5 inhibitor SBFI-103. We show that SBFI-103 is well tolerated and can strongly eliminate RCaP tumor cells in vivo. This provides a pre-clinical platform to fight incurable PC and suggests an important role for FABP5 in PTEN-deficient PC.

8.
Cell Rep ; 37(7): 110027, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788609

RESUMO

Early steps of cancer initiation and metastasis, while critical for understanding disease mechanisms, are difficult to visualize and study. Here, we describe an approach to study the processes of initiation, progression, and metastasis of prostate cancer (PC) in a genetically engineered RapidCaP mouse model, which combines whole-organ imaging by serial two-photon tomography (STPT) and post hoc thick-section immunofluorescent (IF) analysis. STPT enables the detection of single tumor-initiating cells within the entire prostate, and consequent IF analysis reveals a transition from normal to transformed epithelial tissue and cell escape from the tumor focus. STPT imaging of the liver and brain reveal the distribution of multiple metastatic foci in the liver and an early-stage metastatic cell invasion in the brain. This imaging and data analysis pipeline can be readily applied to other mouse models of cancer, offering a highly versatile whole-organ platform to study in situ mechanisms of cancer initiation and progression.


Assuntos
Metástase Neoplásica/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Animais , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Imuno-Histoquímica/métodos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/imunologia , Análise de Célula Única , Tomografia Computadorizada de Emissão/métodos
9.
Cancer Drug Resist ; 4: 745-754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532655

RESUMO

The ability to chemically modify monoclonal antibodies with the attachment of specific functional groups has opened up an enormous range of possibilities for the targeted treatment and diagnosis of cancer in the clinic. As the number of such antibody-based drug candidates has increased, so too has the need for more stringent and robust preclinical evaluation of their in vivo performance to maximize the likelihood that time, research effort, and money are only spent developing the most effective and promising candidate molecules for translation to the clinic. Concurrent with the development of antibody-drug conjugate (ADC) technology, several recent advances in preclinical research stand to greatly increase the experimental rigor by which promising candidate molecules can be evaluated. These include advances in preclinical tumor modeling with the development of patient-derived tumor organoid models that far better recapitulate many aspects of the human disease than conventional subcutaneous xenograft models. Such models are amenable to genetic manipulation, which will greatly improve our understanding of the relationship between ADC and antigen and stringently evaluate mechanisms of therapeutic response. Finally, tumor development is often not visible in these in vivo models. We discuss how the application of several preclinical molecular imaging techniques will greatly enhance the quality of experimental data, enabling quantitative pre- and post-treatment tumor measurements or the precise assessment of ADCs as effective diagnostics. In our opinion, when taken together, these advances in preclinical cancer research will greatly improve the identification of effective candidate ADC molecules with the best chance of clinical translation and cancer patient benefit.

10.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633781

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.


Assuntos
Ácido Mevalônico/metabolismo , Neoplasias Pancreáticas/enzimologia , Esterol O-Aciltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol/metabolismo , Progressão da Doença , Humanos , Perda de Heterozigosidade/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Esterol O-Aciltransferase/deficiência , Proteína Supressora de Tumor p53/metabolismo
11.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236496

RESUMO

Prostate cancer is a slow-growing disease, but not always. A highly rare and lethal form of the disease shows survival rates of less than a year. It is called squamous cell prostate carcinoma. In this issue of JEM, Hermanova et al. (https://doi.org/10.1084/jem.20191787) provide new findings in mouse demonstrating a strong genetic handle on both the reasons behind the rarity and the aggressiveness.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos
12.
Cell ; 181(2): 219-222, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302564

RESUMO

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Assuntos
Neoplasias/metabolismo , Sistema Nervoso/metabolismo , Humanos , Neurociências
13.
Artigo em Inglês | MEDLINE | ID: mdl-31818848

RESUMO

The transduction of signals in the PTEN/PI3-kinase (PI3K) pathway is built around a phosphoinositide (PIP) lipid messenger, phosphatidylinositol trisphosphate, PI(3,4,5)P3 or PIP3 Another, more ancient role of this family of messengers is the control of endocytosis, where a handful of separate PIPs act like postal codes. Prominent among them is PI(3)P, which helps to ensure that endocytic vesicles, their cargo, and membranes themselves reach their correct destinations. Traditionally, the cancer and the endocytic functions of the PI3K signaling pathway have been studied by cancer and membrane biologists, respectively, with some notable but overall minimal overlap. Modern microscopy has enabled monitoring of the PTEN/PI3K pathway in action. Here, we explore the flurry of groundbreaking concepts emerging from those efforts. The discovery that PTEN contains an autonomous PI(3)P reader domain, fused to the catalytic PIP3 eraser domain has prompted us to explore the relationship between PI3K signaling and endocytosis. This revealed how PTEN can achieve signal termination in a precisely controlled fashion, because endocytosis can package the PIP3 signal into discrete units that PTEN will erase. We explore how PTEN can bridge the worlds of endocytosis and PI3K signaling and discuss progress on how PI3K/AKT signaling can be acting from internal membranes. We discuss how the PTEN/PI3K system for growth control may have emerged from principles of endocytosis, and how this development could have affected the evolution of multicellular organisms.


Assuntos
Endocitose , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Humanos
14.
Prostate ; 80(1): 88-98, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661167

RESUMO

BACKGROUND: Prostate cancer (PCa) remains the second leading cause of cancer-related death among men. Taxanes, such as docetaxel and cabazitaxel are utilized in standard treatment regimens for chemotherapy naïve castration-resistant PCa. However, tumors often develop resistance to taxane chemotherapeutics, highlighting a need to identify additional therapeutic targets. Fatty acid-binding protein 5 (FABP5) is an intracellular lipid carrier whose expression is upregulated in metastatic PCa and increases cell growth, invasion, and tumor formation. Here, we assessed whether FABP5 inhibitors synergize with semi-synthetic taxanes to induce cytotoxicity in vitro and attenuate tumor growth in vivo. METHODS: PC3, DU-145, and 22Rv1 PCa cells were incubated with FABP5 inhibitors Stony Brook fatty acid-binding protein inhibitor 102 (SBFI-102) or SBFI-103 in the presence or absence of docetaxel or cabazitaxel, and cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. Cytotoxicity of SBFI-102 and SBFI-103 was also evaluated in noncancerous cells. For the in vivo studies, PC3 cells were subcutaneously implanted into BALB/c nude mice, which were subsequently treated with FABP5 inhibitors, docetaxel, or a combination of both. RESULTS: SBFI-102 and SBFI-103 produced cytotoxicity in the PCa cells. Coincubation of the PCa cells with FABP5 inhibitors and docetaxel or cabazitaxel produced synergistic cytotoxic effects in vitro. Treatment of mice with FABP5 inhibitors reduced tumor growth and a combination of FABP5 inhibitors with a submaximal dose of docetaxel reduced tumor growth to a larger extent than treatment with each drug alone. CONCLUSIONS: FABP5 inhibitors increase the cytotoxic and tumor-suppressive effects of taxanes in PCa cells. The ability of these drugs to synergize could permit more efficacious antitumor activity while allowing for dosages of docetaxel or cabazitaxel to be lowered, potentially decreasing taxane-resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Docetaxel/farmacologia , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Taxoides/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel/administração & dosagem , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Taxoides/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Clin Cancer Res ; 25(23): 7162-7174, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527169

RESUMO

PURPOSE: Napabucasin (2-acetylfuro-1,4-naphthoquinone or BBI-608) is a small molecule currently being clinically evaluated in various cancer types. It has mostly been recognized for its ability to inhibit STAT3 signaling. However, based on its chemical structure, we hypothesized that napabucasin is a substrate for intracellular oxidoreductases and therefore may exert its anticancer effect through redox cycling, resulting in reactive oxygen species (ROS) production and cell death. EXPERIMENTAL DESIGN: Binding of napabucasin to NAD(P)H:quinone oxidoreductase-1 (NQO1), and other oxidoreductases, was measured. Pancreatic cancer cell lines were treated with napabucasin, and cell survival, ROS generation, DNA damage, transcriptomic changes, and alterations in STAT3 activation were assayed in vitro and in vivo. Genetic knockout or pharmacologic inhibition with dicoumarol was used to evaluate the dependency on NQO1. RESULTS: Napabucasin was found to bind with high affinity to NQO1 and to a lesser degree to cytochrome P450 oxidoreductase (POR). Treatment resulted in marked induction of ROS and DNA damage with an NQO1- and ROS-dependent decrease in STAT3 phosphorylation. Differential cytotoxic effects were observed, where NQO1-expressing cells generating cytotoxic levels of ROS at low napabucasin concentrations were more sensitive. Cells with low or no baseline NQO1 expression also produced ROS in response to napabucasin, albeit to a lesser extent, through the one-electron reductase POR. CONCLUSIONS: Napabucasin is bioactivated by NQO1, and to a lesser degree by POR, resulting in futile redox cycling and ROS generation. The increased ROS levels result in DNA damage and multiple intracellular changes, one of which is a reduction in STAT3 phosphorylation.


Assuntos
Apoptose , Benzofuranos/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Proliferação de Células , Dano ao DNA , Humanos , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
16.
J Cell Biol ; 218(6): 1943-1957, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31092557

RESUMO

Metastatic prostate cancer commonly presents with targeted, bi-allelic mutations of the PTEN and TP53 tumor suppressor genes. In contrast, however, most candidate tumor suppressors are part of large recurrent hemizygous deletions, such as the common chromosome 16q deletion, which involves the AKT-suppressing phosphatase PHLPP2. Using RapidCaP, a genetically engineered mouse model of Pten/Trp53 mutant metastatic prostate cancer, we found that complete loss of Phlpp2 paradoxically blocks prostate tumor growth and disease progression. Surprisingly, we find that Phlpp2 is essential for supporting Myc, a key driver of lethal prostate cancer. Phlpp2 dephosphorylates threonine-58 of Myc, which renders it a limiting positive regulator of Myc stability. Furthermore, we show that small-molecule inhibitors of PHLPP2 can suppress MYC and kill PTEN mutant cells. Our findings reveal that the frequent hemizygous deletions on chromosome 16q present a druggable vulnerability for targeting MYC protein through PHLPP2 phosphatase inhibitors.


Assuntos
PTEN Fosfo-Hidrolase/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Proliferação de Células , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
17.
Science ; 361(6409)2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30262472

RESUMO

Cancer cells from a primary tumor can disseminate to other tissues, remaining dormant and clinically undetectable for many years. Little is known about the cues that cause these dormant cells to awaken, resume proliferating, and develop into metastases. Studying mouse models, we found that sustained lung inflammation caused by tobacco smoke exposure or nasal instillation of lipopolysaccharide converted disseminated, dormant cancer cells to aggressively growing metastases. Sustained inflammation induced the formation of neutrophil extracellular traps (NETs), and these were required for awakening dormant cancer. Mechanistic analysis revealed that two NET-associated proteases, neutrophil elastase and matrix metalloproteinase 9, sequentially cleaved laminin. The proteolytically remodeled laminin induced proliferation of dormant cancer cells by activating integrin α3ß1 signaling. Antibodies against NET-remodeled laminin prevented awakening of dormant cells. Therapies aimed at preventing dormant cell awakening could potentially prolong the survival of cancer patients.


Assuntos
Carcinogênese/metabolismo , Armadilhas Extracelulares/enzimologia , Laminas/metabolismo , Neoplasias Pulmonares/patologia , Neutrófilos/enzimologia , Pneumonia/patologia , Animais , DNA/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/microbiologia , Integrina alfa3beta1/metabolismo , Elastase de Leucócito/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Pneumonia/induzido quimicamente , Pneumonia/microbiologia , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/patologia , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Desiminases de Arginina em Proteínas/metabolismo , Proteólise , Ratos , Transdução de Sinais , Fumar , Nicotiana
18.
Cell Rep ; 23(1): 58-67, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617673

RESUMO

A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten-/-;Trp53-/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI.


Assuntos
Antineoplásicos/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Rotenona/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/uso terapêutico , Fibroblastos/metabolismo , Glucose/metabolismo , Masculino , Camundongos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Rotenona/farmacologia , Rotenona/uso terapêutico , Proteína Supressora de Tumor p53/genética
19.
Cancer Res ; 78(2): 348-358, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180472

RESUMO

A distinction between indolent and aggressive disease is a major challenge in diagnostics of prostate cancer. As genetic heterogeneity and complexity may influence clinical outcome, we have initiated studies on single tumor cell genomics. In this study, we demonstrate that sparse DNA sequencing of single-cell nuclei from prostate core biopsies is a rich source of quantitative parameters for evaluating neoplastic growth and aggressiveness. These include the presence of clonal populations, the phylogenetic structure of those populations, the degree of the complexity of copy-number changes in those populations, and measures of the proportion of cells with clonal copy-number signatures. The parameters all showed good correlation to the measure of prostatic malignancy, the Gleason score, derived from individual prostate biopsy tissue cores. Remarkably, a more accurate histopathologic measure of malignancy, the surgical Gleason score, agrees better with these genomic parameters of diagnostic biopsy than it does with the diagnostic Gleason score and related measures of diagnostic histopathology. This is highly relevant because primary treatment decisions are dependent upon the biopsy and not the surgical specimen. Thus, single-cell analysis has the potential to augment traditional core histopathology, improving both the objectivity and accuracy of risk assessment and inform treatment decisions.Significance: Genomic analysis of multiple individual cells harvested from prostate biopsies provides an indepth view of cell populations comprising a prostate neoplasm, yielding novel genomic measures with the potential to improve the accuracy of diagnosis and prognosis in prostate cancer. Cancer Res; 78(2); 348-58. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/genética , Genômica/métodos , Neoplasias da Próstata/diagnóstico , Análise de Célula Única/métodos , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Filogenia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Medição de Risco
20.
Nat Commun ; 8: 14370, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224990

RESUMO

The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células A549 , Animais , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Fibroblastos/metabolismo , Humanos , Integrases/metabolismo , Lentivirus/metabolismo , Ligantes , Camundongos , Domínios Proteicos , Estabilidade Proteica , RNA Guia de Cinetoplastídeos/metabolismo , Tamoxifeno/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...