Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997466

RESUMO

Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up. We concomitantly assessed morphological heterogeneity using deep learning in 1,923 histological sections from 250 individuals. Genetic and morphological (Gleason) diversity were independent predictors of recurrence (hazard ratio (HR) = 3.12 and 95% confidence interval (95% CI) = 1.34-7.3; HR = 2.24 and 95% CI = 1.28-3.92). Combined, they identified a group with half the median time to recurrence. Spatial segregation of clones was also an independent marker of recurrence (HR = 2.3 and 95% CI = 1.11-4.8). We identified copy number changes associated with Gleason grade and found that chromosome 6p loss correlated with reduced immune infiltration. Matched profiling of relapse, decades after diagnosis, confirmed that genomic instability is a driving force in prostate cancer progression. This study shows that combining genomics with artificial intelligence-aided histopathology leads to the identification of clinical biomarkers of evolution.

2.
Int J Radiat Oncol Biol Phys ; 106(4): 715-724, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812718

RESUMO

PURPOSE: To report a planned analysis of the efficacy and toxicity of dose escalation to the intraprostatic dominant nodule identified on multiparametric magnetic resonance imaging using standard and hypofractionated external beam radiation therapy. METHODS AND MATERIALS: DELINEATE is a single centre prospective phase 2 multicohort study including standard (cohort A: 74 Gy in 37 fractions) and moderately hypofractionated (cohort B: 60 Gy in 20 fractions) prostate image guided intensity modulated radiation therapy in patients with National Comprehensive Cancer Network intermediate- and high-risk disease. Patients received an integrated boost of 82 Gy (cohort A) and 67 Gy (cohort B) to lesions visible on multiparametric magnetic resonance imaging. Fifty-five patients were treated in cohort A, and 158 patients were treated in cohort B; the first 50 sequentially treated patients in cohort B were included in this planned analysis. The primary endpoint was late Radiation Therapy Oncology Group rectal toxicity at 1 year. Secondary endpoints included acute and late toxicity measured with clinician- and patient-reported outcomes at other time points and biochemical relapse-free survival for cohort A. Median follow-up was 74.5 months for cohort A and 52.0 months for cohort B. RESULTS: In cohorts A and B, 27% and 40% of patients, respectively, were classified as having National Comprehensive Cancer Network high-risk disease. The cumulative 1-year incidence of Radiation Therapy Oncology Group grade 2 or worse rectal and urinary toxicity was 3.6% and 0% in cohort A and 8% and 10% in cohort B, respectively. There was no reported late grade 3 rectal toxicity in either cohort. Within cohort A, 4 of 55 (7%) patients had biochemical relapse. CONCLUSIONS: Delivery of a simultaneous integrated boost to intraprostatic dominant nodules is feasible in prostate radiation therapy using standard and moderately hypofractionated regimens, with rectal and genitourinary toxicity comparable to contemporary series without an intraprostatic boost.


Assuntos
Neoplasias da Próstata/radioterapia , Hipofracionamento da Dose de Radiação , Radioterapia de Intensidade Modulada/efeitos adversos , Segurança , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioterapia Guiada por Imagem , Recidiva
3.
Clin Cancer Res ; 25(21): 6487-6500, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31345839

RESUMO

PURPOSE: Radiotherapy is important in managing pelvic cancers. However, radiation enteropathy may occur and can be dose limiting. The gut microbiota may contribute to the pathogenesis of radiation enteropathy. We hypothesized that the microbiome differs between patients with and without radiation enteropathy.Experimental Design: Three cohorts of patients (n = 134) were recruited. The early cohort (n = 32) was followed sequentially up to 12 months post-radiotherapy to assess early radiation enteropathy. Linear mixed models were used to assess microbiota dynamics. The late cohort (n = 87) was assessed cross-sectionally to assess late radiation enteropathy. The colonoscopy cohort compared the intestinal mucosa microenvironment in patients with radiation enteropathy (cases, n = 9) with healthy controls (controls, n = 6). Fecal samples were obtained from all cohorts. In the colonoscopy cohort, intestinal mucosa samples were taken. Metataxonomics (16S rRNA gene) and imputed metataxonomics (Piphillin) were used to characterize the microbiome. Clinician- and patient-reported outcomes were used for clinical characterization. RESULTS: In the acute cohort, we observed a trend for higher preradiotherapy diversity in patients with no self-reported symptoms (P = 0.09). Dynamically, diversity decreased less over time in patients with rising radiation enteropathy (P = 0.05). A consistent association between low bacterial diversity and late radiation enteropathy was also observed, albeit nonsignificantly. Higher counts of Clostridium IV, Roseburia, and Phascolarctobacterium significantly associated with radiation enteropathy. Homeostatic intestinal mucosa cytokines related to microbiota regulation and intestinal wall maintenance were significantly reduced in radiation enteropathy [IL7 (P = 0.05), IL12/IL23p40 (P = 0.03), IL15 (P = 0.05), and IL16 (P = 0.009)]. IL15 inversely correlated with counts of Roseburia and Propionibacterium. CONCLUSIONS: The microbiota presents opportunities to predict, prevent, or treat radiation enteropathy. We report the largest clinical study to date into associations of the microbiota with acute and late radiation enteropathy. An altered microbiota associates with early and late radiation enteropathy, with clinical implications for risk assessment, prevention, and treatment of radiation-induced side-effects.See related commentary by Lam et al., p. 6280.


Assuntos
Bactérias/genética , Trato Gastrointestinal/microbiologia , Neoplasias Pélvicas/radioterapia , Lesões por Radiação/genética , Idoso , Bactérias/classificação , Bactérias/efeitos da radiação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/patologia , Trato Gastrointestinal/efeitos da radiação , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Neoplasias Pélvicas/complicações , Neoplasias Pélvicas/microbiologia , Neoplasias Pélvicas/patologia , RNA Ribossômico 16S/genética , Exposição à Radiação/efeitos adversos , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia
4.
Int J Radiat Oncol Biol Phys ; 99(5): 1234-1242, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939224

RESUMO

PURPOSE: To investigate the feasibility of dose escalation and hypofractionation of pelvic lymph node intensity modulated radiation therapy (PLN-IMRT) in prostate cancer (PCa). METHODS AND MATERIALS: In a phase 1/2 study, patients with advanced localized PCa were sequentially treated with 70 to 74 Gy to the prostate and dose-escalating PLN-IMRT at doses of 50 Gy (cohort 1), 55 Gy (cohort 2), and 60 Gy (cohort 3) in 35 to 37 fractions. Two hypofractionated cohorts received 60 Gy to the prostate and 47 Gy to PLN in 20 fractions over 4 weeks (cohort 4) and 5 weeks (cohort 5). All patients received long-course androgen deprivation therapy. Primary outcome was late Radiation Therapy Oncology Group toxicity at 2 years after radiation therapy for all cohorts. Secondary outcomes were acute and late toxicity using other clinician/patient-reported instruments and treatment efficacy. RESULTS: Between August 9, 2000, and June 9, 2010, 447 patients were enrolled. Median follow-up was 90 months. The 2-year rates of grade 2+ bowel/bladder toxicity were as follows: cohort 1, 8.3%/4.2% (95% confidence interval 2.2%-29.4%/0.6%-26.1%); cohort 2, 8.9%/5.9% (4.1%-18.7%/2.3%-15.0%); cohort 3, 13.2%/2.9% (8.6%-20.2%/1.1%-7.7%); cohort 4, 16.4%/4.8% (9.2%-28.4%/1.6%-14.3%); cohort 5, 12.2%/7.3% (7.6%-19.5%/3.9%-13.6%). Prevalence of bowel and bladder toxicity seemed to be stable over time. Other scales mirrored these results. The biochemical/clinical failure-free rate was 71% (66%-75%) at 5 years for the whole group, with pelvic lymph node control in 94% of patients. CONCLUSIONS: This study shows the safety and tolerability of PLN-IMRT. Ongoing and planned phase 3 studies will need to demonstrate an increase in efficacy using PLN-IMRT to offset the small increase in bowel side effects compared with prostate-only IMRT.


Assuntos
Irradiação Linfática/métodos , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Idoso , Antagonistas de Androgênios/uso terapêutico , Estudos de Coortes , Estudos de Viabilidade , Seguimentos , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Pelve , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Hipofracionamento da Dose de Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...