Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793457

RESUMO

This study introduces a novel approach to synthesising a three-dimensional (3D) micro-nanostructured amorphous biosilica. The biosilica is coated with cerium oxide nanoparticles obtained from laboratory-grown unicellular photosynthetic algae (diatoms) doped metabolically with cerium. This unique method utilises the ability of diatom cells to absorb cerium metabolically and deposit it on their silica exoskeleton as cerium oxide nanoparticles. The resulting composite (Ce-DBioSiO2) combines the unique structural and photonic properties of diatom biosilica (DBioSiO2) with the functionality of immobilised CeO2 nanoparticles. The kinetics of the cerium metabolic insertion by diatom cells and the physicochemical properties of the obtained composites were thoroughly investigated. The resulting Ce-DBioSiO2 composite exhibits intense Stokes fluorescence in the violet-blue region under ultraviolet (UV) irradiation and anti-Stokes intense violet and faint green emissions under the 800 nm near-infrared excitation with a xenon lamp at room temperature in an ambient atmosphere.

2.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374528

RESUMO

In the pursuit of innovative solutions for modern technologies, particularly in the design and production of new micro/nanostructured materials, microorganisms acting as "natural microtechnologists" can serve as a valuable source of inspiration. This research focuses on harnessing the capabilities of unicellular algae (diatoms) to synthesize hybrid composites composed of AgNPs/TiO2NPs/pyrolyzed diatomaceous biomass (AgNPs/TiO2NPs/DBP). The composites were consistently fabricated through metabolic (biosynthesis) doping of diatom cells with titanium, pyrolysis of the doped diatomaceous biomass, and chemical doping of the pyrolyzed biomass with silver. To characterize the synthesized composites, their elemental and mineral composition, structure, morphology, and photoluminescent properties were analysed using techniques such as X-ray diffraction, scanning and transmission electron microscopy, and fluorescence spectroscopy. The study revealed the epitaxial growth of Ag/TiO2 nanoparticles on the surface of pyrolyzed diatom cells. The antimicrobial potential of the synthesized composites was evaluated using the minimum inhibitory concentration (MIC) method against prevalent drug-resistant microorganisms, including Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, both from laboratory cultures and clinical isolates.

3.
Biomimetics (Basel) ; 9(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38248579

RESUMO

The 3D (three-dimensional) micro-nanostructured diatom biosilica obtained from cultivated diatoms was used as a support to immobilize epitaxially growing AgCl-Ag hybrid nanoparticles ((Ag-AgCl)NPs) for the synthesis of nanocomposites with antimicrobial properties. The prepared composites that contained epitaxially grown (Ag-AgCl)NPs were investigated in terms of their morphological and structural characteristics, elemental and mineral composition, crystalline forms, zeta potential, and photoluminescence properties using a variety of instrumental methods including SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDX (energy-dispersive X-ray spectroscopy), XRD (X-ray powder diffraction), zeta-potential measurement, and photoluminescence spectroscopy. The content of (AgCl-Ag)NPs in the hybrid composites amounted to 4.6 mg/g and 8.4 mg/g with AgClNPs/AgNPs ratios as a percentage of 86/14 and 51/49, respectively. Hybrid nanoparticles were evenly dispersed with a dominant size of 5 to 25 nm in composite with an amount of 8.4 mg/g of silver. The average size of the nanoparticles was 7.5 nm; also, there were nanoparticles with a size of 1-2 nm and particles that were 20-40 nm. The synthesis of (Ag-AgCl)NPs and their potential mechanism were studied. The MIC (the minimum inhibitory concentration method) approach was used to investigate the antimicrobial activity against microorganisms Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The nanocomposites containing (Ag-AgCl)NPs and natural diatom biosilica showed resistance to bacterial strains from the American Type Cultures Collection and clinical isolates (diabetic foot infection and wound isolates).

4.
J Funct Biomater ; 13(4)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547531

RESUMO

Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.

5.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640126

RESUMO

Reduced graphene oxide (rGO) was prepared by chemical reduction of graphene oxide (GO) (with a modified Hummers method) in aqueous solutions of hydrazine (N2H4), formaldehyde (CH2O), formic acid (HCO2H) accompanied by a microwave treatment at 250 °C (MWT) by a high pressure microwave reactor (HPMWR) at 55 bar. The substrates and received products were investigated by TEM, XRD, Raman and IR spectroscopies, XPS, XAES and REELS. MWT assisted reduction using different agents resulted in rGOs of a large number of vacancy defects, smaller than at GO surface C sp3 defects, oxygen groups and interstitial water, interlayer distance and diameter of stacking nanostructures (flakes). The average number of flake layers obtained from XRD and REELS was consistent, being the smallest for CH2O and then increasing for HCO2H and N2H4. The number of layers in rGOs increases with decreasing content of vacancy, C sp3 defects, oxygen groups, water and flake diameter. MWT conditions facilitate formation of vacancies and additional hydroxyl, carbonyl and carboxyl groups at these vacancies, provide no remarkable modification of flake diameter, what results in more competitive penetration of reducing agent between the interstitial sites than via vacancies. MWT reduction of GO using a weak reducing agent (CH2O) provided rGO of 8 layers thickness.

6.
Materials (Basel) ; 14(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300975

RESUMO

The influence of the grinding process on the magnetic properties of as prepared and functionalized multiwall carbon nanotubes (MWCNTs) is presented. We have observed that 3 h mechanical grinding at 400 rpm in contrast to functionalization does not remove the iron contamination from MWCNTs. However, it changes the Fe chemical states. The magnetic properties of iron nanoparticles (Fe-NPs) embedded in the carbon matrix of MWCNTs have been analyzed in detail. We have proven that single-domain non-interacting Fe(C,O)-NPs enriched in the Fe3C phase (~10 nm) enclosed inside these nanotubes are responsible for their magnetic properties. Mechanical grinding revealed a unique impact of -COOH groups (compared to -COONH4 groups) on the magnetism of functionalized MWCNTs. In MWCNT-COOH ground in a steel mill, the contribution of the Fe2O3 and α-Fe phases increased while the content of the magnetically harder Fe3C phase decreased. This resulted in a 2-fold coercivity (Hc) decrease and saturation magnetization (MS) increase. A 2-fold remanence (Mr) decrease in MWCNT-COOH ground in an agate mill is related to the modified Fe(C,O)-NP magnetization dynamics. Comparison of the magnetostatic exchange and effective anisotropy length estimated for Fe(C,O)-NPs allows concluding that the anisotropy energy barrier is higher than the magnetostatic energy barrier. The enhanced contribution of surface anisotropy to the effective anisotropy constant and the unique effect of the -COOH groups on the magnetic properties of MWCNTs are discussed. The procedure for grinding carboxylated MWCNTs with embedded iron nanoparticles using a steel mill has a potential application for producing Fe-C nanocomposites with desired magnetic properties.

7.
Dalton Trans ; 49(46): 16791-16800, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174575

RESUMO

Functionalized carbon nanotubes are interesting, promising and unique delivery systems for anticancer drugs, which are now in the spotlight of nanomedicine. Connecting nanotubes with anticancer drugs or new compounds with anticancer properties aims at improving their stability, efficiency and reduces the toxic side effects of cancer treatment. In our research, we are interested in connecting functionalized MWCNTs-NH2 with [InH][trans-RuCl4(In)2], (KP1019) which is one of the most promising anticancer ruthenium(iii) drug candidates, known mainly as a cytotoxic agent for the treatment of platinum-resistant colorectal cancers. As a result of the amidation of MWCNTs (1), MWCNTs-NH2 (2) were obtained. Then, they were modified with [InH][RuCl4(In)2] (4) and the nanosystem [MWCNT-NH3+][RuCl4(In)2-] (3) was obtained. The characterization of the resulting products was performed using IR, Raman spectroscopy, thermal gravimetric, XRD, STEM-EDX, ESI-MS, ICP-MS, and XPS analyses. The cytotoxic activity has been tested on human lung carcinoma (A549), chronic myelogenous leukemia (K562) and human cervix carcinoma (HeLa) cells which showed the higher toxicity of the nanosystem than the ruthenium complex.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Indazóis/química , Nanotubos de Carbono/química , Rutênio/química , Células A549 , Antineoplásicos/efeitos adversos , Complexos de Coordenação/efeitos adversos , Células HeLa , Humanos
8.
Materials (Basel) ; 13(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993125

RESUMO

Herein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic flakes in the preceramic blends. The physicochemical investigation of SiOC/graphite composites using X-ray diffraction, 29Si solid state NMR and Raman spectroscopy indicated no reaction occurring between the components. The electrochemical measurements revealed enhanced capacity (by up to 63%) at high current rates (1.86 A g-1) recorded for SiOC/graphite composite compared to the pure components. Moreover, the addition of graphite to the SiOC matrix decreased the value of delithiation potential, which is a desirable feature for anodes in LIC.

9.
Materials (Basel) ; 13(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325884

RESUMO

In this work, we report the synthesis of hydrated and non-crystalline WO3 flakes (WO3-x) via an environmentally friendly and facile water-based strategy. This method is described, in the literature, as exfoliation, however, based on the results obtained, we cannot say unequivocally that we have obtained an exfoliated material. Nevertheless, the proposed modification procedure clearly affects the morphology of WO3 and leads to loss of crystallinity of the material. TEM techniques confirmed that the process leads to the formation of WO3 flakes of a few nanometers in thickness. X-ray diffractograms affirmed the poor crystallinity of the flakes, while spectroscopic methods showed that the materials after exfoliation were abundant with the surface groups. The thin film of hydrated and non-crystalline WO3 exhibits a seven times higher specific capacitance (Cs) in an aqueous electrolyte than bulk WO3 and shows an outstanding long-term cycling stability with a capacitance retention of 92% after 1000 chronopotentiometric cycles in the three-electrode system. In the two-electrode system, hydrated WO3-x shows a Cs of 122 F g-1 at a current density of 0.5 A g-1. The developed supercapacitor shows an energy density of 60 Whkg-1 and power density of 803 Wkg-1 with a decrease of 16% in Csp after 10,000 cycles. On the other hand, WO3-x is characterized by inferior properties as an anode material in lithium-ion batteries compared to bulk WO3. Lithium ions intercalate into a WO3 crystal framework and occupy trigonal cavity sites during the electrochemical polarization. If there is no regular layer structure, as in the case of the hydrated and non-crystalline WO3, the insertion of lithium ions between WO3 layers is not possible. Thus, in the case of a non-aqueous electrolyte, the specific capacity of the hydrated and non-crystalline WO3 electrode material is much lower in comparison with the specific capacity of the bulk WO3-based anode material.

10.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31546990

RESUMO

One of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (Bi2S3) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method. Transmission electron microscopy (TEM) analysis revealed that quantum dots with a size in the range of 6-11 nm were located both inside and on the external surfaces of the Ta2O5 NTs. The effect of the anodization time and annealing conditions, as well as the effect of cycle numbers in the SILAR method, on the surface properties and photoactivity of Ta2O5 nanotubes and Bi2S3/Ta2O5 composites have been investigated. The Ta2O5 nanotubes decorated with Bi2S3 QDs exhibit high photocatalytic activity in the toluene degradation reaction, i.e., 99% of toluene (C0 = 200 ppm) was degraded after 5 min of UV-Vis irradiation. Therefore, the proposed anodic oxidation of tantalum (Ta) foil followed by SILAR decorating allows a photocatalytic surface, ready to use for pollutant degradation in the gas phase, to be obtained.

11.
Dalton Trans ; 48(5): 1662-1671, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30564826

RESUMO

Novel visible light responsive materials for water splitting are essential for the efficient conversion of solar energy into hydrogen bond energy. Among other semiconductors, gadolinium orthovanadate has appropriate conduction and valence band edges positioned to split water molecules and a narrow band gap that allows the use of visible light for hydrogen generation. Thus, we present here that hydrogen evolution under visible light (λ > 420 nm) could be accomplished using hierarchical 3D GdVO4 particles, obtained by a simple, one pot hydrothermal synthesis. We found that applying various reaction components, such as EDTA-Na2 and EDTA, and adjusting the pH of the solution allow one to tune the shape of GdVO4 (such as short nanowires, long nanowires, short nanorods, long nanorods, nanoparticles and spheres - all having a tetragonal crystal structure) as well as optical and photocatalytic properties. The highest ability to photocatalytically split methanol solution into hydrogen under UV-Vis irradiation was detected for the long nanowire sample (42 µmol h-1), having almost 11 times higher efficiency in comparison with the weakest sample - short nanowires. In addition, GdVO4 spheres generated H2 more than 2 times (5.75 µmol h-1) in comparison with the short nanorod sample (2.5 µmol h-1) under visible light excitation. Photostable in three-hour work cycles, long nanowires and spheres were even able to generate hydrogen from pure water, reaching values of 17 and 3 µmol under UV-Vis and Vis light, respectively.

12.
Vaccine ; 36(46): 6902-6910, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322744

RESUMO

Accidental freezing of aluminum-based vaccines occurs during their storage and transportation, in both developed and developing countries. Freezing damages the freeze-sensitive aluminum adjuvanted vaccines, through separation of lattice between aluminum adjuvant and antigen, leading to formation of aluminum aggregates, and loss of potency. In this study, we examined Alhydrogel™ ([AlO(OH)]xnH2O, aluminum hydroxide, hydrated for adsorption) stored under recommended conditions, and exposed to freezing temperature until solid-frozen. The main purpose of our research was to determine the destruction areas of the solid-frozen Alhydrogel™ using selected methods of scanning electron microscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier-transform infrared spectroscopy and transmission electron microscopy working in diffraction mode. The Zeta potential evaluation, measurements of albumin adsorption power, thermogravimetric analysis and estimation of the mass loss after drying indicated significant structural (physical) and chemical differences between the freeze-damaged and non-frozen vaccine adjuvant. The presented results are important to better understand the type and nature of damages occurring in freeze-damaged aluminum-based vaccines. These results can be used in future studies to improve the temperature stability of aluminum adjuvanted vaccines.


Assuntos
Adjuvantes Imunológicos/efeitos da radiação , Hidróxido de Alumínio/efeitos da radiação , Fenômenos Químicos/efeitos da radiação , Congelamento , Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
13.
ACS Nano ; 11(11): 11409-11416, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29061037

RESUMO

We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·gSi-1 (400 and 600 mAh·gcomposite-1), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li-Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid-electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach.

14.
Molecules ; 22(4)2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362359

RESUMO

Vertically oriented, self-organized TiO2-MnO2 nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λmax = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 µm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO2-MnO2 NTs under visible light was presented, pointing out the importance of MnO2 species for the generation of e- and h⁺.


Assuntos
Compostos de Manganês/química , Nanotubos/química , Óxidos/química , Processos Fotoquímicos/efeitos da radiação , Titânio/química , Tolueno/química , Tolueno/efeitos da radiação , Catálise/efeitos da radiação , Cinética , Nanotubos/ultraestrutura , Espectrofotometria Ultravioleta , Análise Espectral Raman , Difração de Raios X
15.
Molecules ; 22(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379185

RESUMO

V2O5-TiO2 mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30-50 V), vanadium content (5-15 wt %) in the alloy, and water content (2-10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt %) exhibited the best auto-alignment and self-organization (length = 1 µm, diameter = 86 nm and wall thickness = 11 nm). Additionally, a probable growth mechanism of V2O5-TiO2 nanotubes (NTs) over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm) in the presence of the modified TiO2 nanostructures. The highest degradation value was 35% after 60 min of irradiation. V2O5 species were ascribed as the main structures responsible for the generation of photoactive e- and h⁺ under Vis light and a possible excitation mechanism was proposed.


Assuntos
Eletrodos , Nanotubos/química , Oxirredução , Processos Fotoquímicos , Titânio/química , Compostos de Vanádio/química , Ligas , Catálise , Nanotubos/ultraestrutura , Fotólise , Análise Espectral
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 793-801, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25448977

RESUMO

The Raman and complementary spectroscopic analyses were performed using the exceptional possibility of research on the XIX c. original paint materials of the artist palette of J. Matejko stored in the National Museum in Cracow. The yellow and ochre-based paints characteristic for Matejko's workshop and selected from the ensemble of 273 labelled tubes (brand of R. Ainé/Paris) supplied during the period of 1880-1893 were investigated. Highly specific Raman spectra were obtained for paints containing mixtures of the Zn- and Sn-modified Pb-Sb pigment, and also for the ochre-based ones. A clear pigment discrimination of the mixture of cadmium yellow (CdS), cinnabar (HgS) and lead white (2PbCO3⋅Pb(OH)2) was possible by means of Raman data collected under different excitations at 514 nm and 785 nm. It was shown that the Raman spectra complemented by the XRF, SEM-EDX and in some cases also by the LIPS and FTIR data ensure reliable pigment identification in multi-component paints containing secondary species and impurities. The reported spectral signatures will be used for non-destructive investigation of the collection of about 300 oil paintings of J. Matejko. In view of the comparative research on polish painting which point out that richness of modified Naples yellows clearly distinguish Matejko's artworks from other ones painted in the period of 1850-1883, the Raman data of these paints can provide support in the authentication studies.


Assuntos
Corantes/análise , Pintura/análise , Pinturas/história , Análise Espectral Raman , Corantes/química , História do Século XIX , Pintura/história , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...