Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(5): 1042-1054, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407050

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid ß1-42 (Aß1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aß1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aß1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , MicroRNAs , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Fosfatidilinositol 3-Quinases , Disfunção Cognitiva/diagnóstico , Biomarcadores , Neuroimagem , Proteínas tau , Peptídeos beta-Amiloides
2.
Brain Res ; 1829: 148791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307153

RESUMO

BACKGROUND: The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES: To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS: Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS: Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS: The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.


Assuntos
Doença de Alzheimer , MicroRNAs , Masculino , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Alzheimer/metabolismo , Envelhecimento , Amnésia , Hormônios Esteroides Gonadais
3.
J Alzheimers Dis Rep ; 7(1): 235-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090956

RESUMO

Background: Late-onset or sporadic Alzheimer's disease (sAD) is a neurodegenerative disease leading to cognitive impairment and memory loss. The underlying pathological changes take place several years prior to the appearance of the first clinical symptoms, however, the early diagnosis of sAD remains obscure. Objective: To identify changes in circulating microRNA (miR) expression in an effort to detect early biomarkers of underlying sAD pathology. Methods: A set of candidate miRs, earlier detected in biofluids from subjects at early stage of sAD, was linked to the proposed tau-driven adverse outcome pathway for memory loss. The relative expression of the selected miRs in serum of 12 cases (mild cognitive impairment, MCI) and 27 cognitively normal subjects, recruited within the ongoing Aiginition Longitudinal Biomarker Investigation Of Neurodegeneration (ALBION) study, was measured by RT-qPCR. Data on the protein levels of amyloid-ß (Aß42) and total/phosphorylated tau (t-tau/p-tau), in cerebrospinal fluid (CSF), and the cognitive z-scores of the participants were also retrieved. Results: Each doubling in relative expression of 13 miRs in serum changed the odds of either having MCI (versus control), or having pathological Aß42 or pathological Aß42 and tau (versus normal) proteins in their CSF, or was associated with the global composite z-score. Conclusion: These candidate human circulating miRs may be of great importance in early diagnosis of sAD. There is an urgent need for confirming these proposed early predictive biomarkers for sAD, contributing not only to societal but also to economic benefits.

4.
J Alzheimers Dis Rep ; 6(1): 271-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891639

RESUMO

The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer's disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer's disease pathology.

5.
J Alzheimers Dis ; 86(3): 1427-1457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213375

RESUMO

BACKGROUND: A complex network of aging-related homeostatic pathways that are sensitive to further deterioration in the presence of genetic, systemic, and environmental risk factors, and lifestyle, is implicated in the pathogenesis of progressive neurodegenerative diseases, such as sporadic (late-onset) Alzheimer's disease (sAD). OBJECTIVE: Since sAD pathology and neurotoxicity share microRNAs (miRs) regulating common as well as overlapping pathological processes, environmental neurotoxic compounds are hypothesized to exert a risk for sAD initiation and progression. METHODS: Literature search for miRs associated with human sAD and environmental neurotoxic compounds was conducted. Functional miR analysis using PathDip was performed to create miR-target interaction networks. RESULTS: The identified miRs were successfully linked to the hypothetical starting point and key events of the earlier proposed tau-driven adverse outcome pathway toward memory loss. Functional miR analysis confirmed most of the findings retrieved from literature and revealed some interesting findings. The analysis identified 40 miRs involved in both sAD and neurotoxicity that dysregulated processes governing the plausible adverse outcome pathway for memory loss. CONCLUSION: Creating miR-target interaction networks related to pathological processes involved in sAD initiation and progression, and environmental chemical-induced neurotoxicity, respectively, provided overlapping miR-target interaction networks. This overlap offered an opportunity to create an alternative picture of the mechanisms underlying sAD initiation and early progression. Looking at initiation and progression of sAD from this new angle may open for new biomarkers and novel drug targets for sAD before the appearance of the first clinical symptoms.


Assuntos
Rotas de Resultados Adversos , Doença de Alzheimer , MicroRNAs , Síndromes Neurotóxicas , Doença de Alzheimer/patologia , Amnésia , Humanos , Transtornos da Memória , MicroRNAs/genética , Síndromes Neurotóxicas/genética
6.
J Alzheimers Dis ; 81(2): 459-485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33843671

RESUMO

The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aß-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.


Assuntos
Rotas de Resultados Adversos , Doença de Alzheimer/patologia , Amnésia/patologia , Encéfalo/patologia , Transtornos da Memória/patologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Transtornos da Memória/metabolismo , Medição de Risco
7.
Epigenetics ; 16(4): 373-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32892695

RESUMO

There is an increasing interest in microRNAs (miRNAs) as they are of utmost importance in gene regulation at the posttranscriptional level. Sex-related susceptibility for non-communicable diseases later in life could originate in early life. Until now, no data on sex-specific miRNA expression are available for the placenta. Therefore, we investigated the difference by sex of newborn's miRNA expression in human placental tissue. Within the ENVIRONAGE birth cohort, miRNA and mRNA expression profiling was performed in 60 placentae (50% boys) using Agilent (8 × 60 K) microarrays. The distribution of chromosome locations was studied and pathway analysis of the identified sex-specific miRNAs in the placenta was carried out. Of the total 2558 miRNAs on the array, 597 miRNAs were expressed in over 70% of the samples and were included for further analyses. A total of 142 miRNAs were significantly (FDR<0.05) associated with the newborn's sex. In newborn girls, 76 miRNAs had higher expression (hsa-miR-361-5p as most significant) and 66 miRNAs had lower expression (hsa-miR-4646-5p as most significant) than in newborn boys. In the same study population, placental differentially expressed genes by sex were also identified using a whole genome approach. The placental gene expression revealed 27 differentially expressed genes by comparing girls to boys. Ultimately, we studied the miRNA-RNA interactome and identified 14 miRNA-mRNA interactions as sex-specific. Sex differences in placental m(i)RNA expression may reveal sex-specific patterns already present during pregnancy, which may influence physiological conditions in early or later life. These molecular processes might play a role in sex-specific disease susceptibility in later life.


Assuntos
Coorte de Nascimento , MicroRNAs , Estudos de Coortes , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Recém-Nascido , Masculino , MicroRNAs/metabolismo , Placenta/metabolismo , Gravidez
8.
Environ Int ; 142: 105860, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599355

RESUMO

BACKGROUND: Air pollution exposure during pregnancy is an important environmental health issue. Epigenetics mediate the effects of prenatal exposure and could increase disease predisposition in later life. The oncogenic miR-17/92 cluster is involved in normal development and disease. OBJECTIVES: Here, for the first time the potential prenatal effects of particulate matter with a diameter<2.5 µm (PM2.5) exposure on expression of the miR-17/92 cluster in cord blood are explored. METHODS: In 370 mother-newborn pairs from the ENVIRONAGE birth cohort, expression of three members of the miR-17/92 cluster was measured in cord blood by qRT-PCR. Expression of C-MYC and CDKN1A, a cluster activator and a target gene, respectively, was also analyzed. Multivariable linear regression models were used to associate the relative m(i)RNA expression with prenatal PM2.5 exposure. RESULTS: PM2.5 exposure averaged (10th-90th percentile) 11.7 (9.0-14.4) µg/m3 over the entire pregnancy. In cord blood, miR-17 and miR-20a showed a -45.0% (95%CI: -55.9 to -31.4, p < 0.0001) and a -33.7% (95%CI: -46.9 to -17.2, p = 0.0003), decrease in expression in association with first trimester PM2.5 exposure, and a -32.5% (95%CI: -45.6 to -16.3, p = 0.0004) and -23.3% (95%CI: -38.1 to -4.8, p = 0.02), respectively, decrease in expression in association with PM2.5 exposure during the entire pregnancy. In association with third trimester PM2.5 exposure, a reduction of -25.8% (95%CI: -40.2 to -8.0, p = 0.007) and -14.2% (95%CI: -27.7 to 1.9, p = 0.08), for miR-20a and miR-92a expression, respectively, was identified. Only miR-92a expression (-15.7%, 95%CI: -27.3 to -2.4, p = 0.02) was associated with PM2.5 exposure during the last month of pregnancy. C-MYC expression was downregulated in cord blood in association with prenatal PM2.5 exposure during the first trimester and the entire pregnancy, in the adjusted model. DISCUSSION: Lower expression levels of the miR-17/92 cluster in cord blood in association with increased prenatal PM2.5 exposure were observed. Whether this oncogenic microRNA cluster plays a role in trans-placental carcinogenesis remains to be elucidated.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , MicroRNAs , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Feminino , Sangue Fetal/química , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , MicroRNAs/genética , Material Particulado/análise , Material Particulado/toxicidade , Gravidez
9.
Front Genet ; 10: 354, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110514

RESUMO

Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming.

10.
J Transl Med ; 16(1): 254, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208911

RESUMO

BACKGROUND: In the early-life environment, proper development of the placenta is essential for both fetal and maternal health. Telomere length at birth has been related to life expectancy. MicroRNAs (miRNAs) as potential epigenetic determinants of telomere length at birth have not been identified. In this study, we investigate whether placental miRNA expression is associated with placental telomere length at birth. METHODS: We measured the expression of seven candidate miRNAs (miR-16-5p, -20a-5p, -21-5p, -34a-5p, 146a-5p, -210-3p and -222-3p) in placental tissue at birth in 203 mother-newborn (51.7% girls) pairs from the ENVIRONAGE birth cohort. We selected miRNAs known to be involved in crucial cellular processes such as inflammation, oxidative stress, cellular senescence related to aging. Placental miRNA expression and relative average placental telomere length were measured using RT-qPCR. RESULTS: Both before and after adjustment for potential covariates including newborn's ethnicity, gestational age, paternal age, maternal smoking status, maternal educational status, parity, date of delivery and outdoor temperature during the 3rd trimester of pregnancy, placental miR-34a, miR-146a, miR-210 and miR-222 expression were significantly (p ≤ 0.03) and positively associated with placental relative telomere length in newborn girls. In newborn boys, only higher expression of placental miR-21 was weakly (p = 0.08) associated with shorter placental telomere length. Significant miRNAs explain around 6-8% of the telomere length variance at birth. CONCLUSIONS: Placental miR-21, miR-34a, miR-146a, miR-210 and miR-222 exhibit sex-specific associations with telomere length in placenta. Our results indicate miRNA expression in placental tissue could be an important determinant in the process of aging starting from early life onwards.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Placenta/metabolismo , Caracteres Sexuais , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , MicroRNAs/metabolismo , Gravidez
11.
Sci Rep ; 8(1): 6063, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29636526

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

12.
J Transl Med ; 16(1): 2, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29316938

RESUMO

BACKGROUND: HIF1α, miR-210 and its downstream targets ISCU, COX-10, RAD52 and PTEN are all part of the placental hypoxia-responsive network. Tight regulation of this network is required to prevent development of maternal-fetal complications such as fetal growth restriction. HIF1α expression is increased in preeclamptic placentae, but little is known about its association with birth weight in normal pregnancies. METHODS: We measured placental levels of HIF1α, miR-20a, miR-210, ISCU, COX-10, RAD52 and PTEN in 206 mother-newborn pairs of the ENVIRONAGE birth cohort. RESULTS: Placental HIF1α gene expression was inversely associated with the ponderal index (PI): for a doubling in placental HIF1α expression, PI decreased by 6.7% (95% confidence interval [CI] 1.3 to 12.0%, p = 0.01). Placental RAD52 expression also displayed an inverse association with PI, a doubling in gene expression was associated with a 6.2% (CI 0.2 to 12.1% p = 0.04) decrease in PI. As for birth weight, we observed a significant association with placental miR-20a expression only in boys, where a doubling in miR-20a expression is associated with a 54.2 g (CI 0.6 to 108 g, p = 0.05) increase in birth weight. CONCLUSIONS: The decrease in fetal growth associated with expression of hypoxia-network members HIF1a, RAD52 and miR-20a indicates that this network is important in potential intrauterine insults.


Assuntos
Peso ao Nascer , Hipóxia/patologia , Placenta/patologia , Adulto , Estudos de Coortes , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Epigenetics ; 13(2): 135-146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27104955

RESUMO

Particulate matter (PM) exposure during in utero life may entail adverse health outcomes in later-life. Air pollution's adverse effects are known to alter gene expression profiles, which can be regulated by microRNAs (miRNAs). We investigate the potential influence of air pollution exposure in prenatal life on placental miRNA expression. Within the framework of the ENVIRONAGE birth cohort, we measured the expression of six candidate miRNAs in placental tissue from 210 mother-newborn pairs by qRT-PCR. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Multiple regression models were used to study miRNA expression and in utero exposure to PM2.5 over various time windows during pregnancy. The placental expression of miR-21 (-33.7%, 95% CI: -53.2 to -6.2, P = 0.022), miR-146a (-30.9%, 95% CI: -48.0 to -8.1, P = 0.012) and miR-222 (-25.4%, 95% CI: -43.0 to -2.4, P = 0.034) was inversely associated with PM2.5 exposure during the 2nd trimester of pregnancy, while placental expression of miR-20a and miR-21 was positively associated with 1st trimester exposure. Tumor suppressor phosphatase and tensin homolog (PTEN) was identified as a common target of the miRNAs significantly associated with PM exposure. Placental PTEN expression was strongly and positively associated (+59.6% per 5 µg/m³ increment, 95% CI: 26.9 to 100.7, P < 0.0001) with 3rd trimester PM2.5 exposure. Further research is required to establish the role these early miRNA and mRNA expression changes might play in PM-induced health effects. We provide molecular evidence showing that in utero PM2.5 exposure affects miRNAs expression as well as its downstream target PTEN.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Epigênese Genética , Exposição Materna , MicroRNAs/genética , Material Particulado/efeitos adversos , Placenta/metabolismo , Adulto , Poluentes Atmosféricos/farmacologia , Feminino , Humanos , Recém-Nascido , Masculino , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Material Particulado/farmacologia , Placenta/efeitos dos fármacos , Gravidez
14.
Environ Health ; 16(1): 87, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821289

RESUMO

BACKGROUND: Due to their lack of repair capacity mitochondria are critical targets for environmental toxicants. We studied genes and pathways reflecting mitochondrial responses to short- and medium-term PM10 exposure. METHODS: Whole genome gene expression was measured in peripheral blood of 98 adults (49% women). We performed linear regression analyses stratified by sex and adjusted for individual and temporal characteristics to investigate alterations in gene expression induced by short-term (week before blood sampling) and medium-term (month before blood sampling) PM10 exposure. Overrepresentation analyses (ConsensusPathDB) were performed to identify enriched mitochondrial associated pathways and gene ontology sets. Thirteen Human MitoCarta genes were measured by means of quantitative real-time polymerase chain reaction (qPCR) along with mitochondrial DNA (mtDNA) content in an independent validation cohort (n = 169, 55.6% women). RESULTS: Overrepresentation analyses revealed significant pathways (p-value <0.05) related to mitochondrial genome maintenance and apoptosis for short-term exposure and to the electron transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10 exposure was associated with the Tri Carbonic Acid cycle. In an independent study population, we validated several ETC genes, including UQCRH and COX7C (q-value <0.05), and some genes crucial for the maintenance of the mitochondrial genome, including LONP1 (q-value: 0.07) and POLG (q-value: 0.04) in women. CONCLUSIONS: In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Genes Mitocondriais/efeitos dos fármacos , Material Particulado/toxicidade , Transcriptoma/efeitos dos fármacos , Idoso , Bélgica , Estudos de Coortes , Monitoramento Ambiental , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais
15.
Sci Rep ; 7(1): 5548, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717128

RESUMO

There is increasing evidence that the predisposition for development of chronic diseases arises at the earliest times of life. In this context, maternal pre-pregnancy weight might modify fetal metabolism and the child's predisposition to develop disease later in life. The aim of this study is to investigate the association between maternal pre-pregnancy body mass index (BMI) and miRNA alterations in placental tissue at birth. In 211 mother-newborn pairs from the ENVIRONAGE birth cohort, we assessed placental expression of seven miRNAs important in crucial cellular processes implicated in adipogenesis and/or obesity. Multiple linear regression models were used to address the associations between pre-pregnancy BMI and placental candidate miRNA expression. Maternal pre-pregnancy BMI averaged (±SD) 23.9 (±4.1) kg/m2. In newborn girls (not in boys) placental miR-20a, miR-34a and miR-222 expression was lower with higher maternal pre-pregnancy BMI. In addition, the association between maternal pre-pregnancy BMI and placental expression of these miRNAs in girls was modified by gestational weight gain. The lower expression of these miRNAs in placenta in association with pre-pregnancy BMI, was only evident in mothers with low weight gain (<14 kg). The placental expression of miR-20a, miR-34a, miR-146a, miR-210 and miR-222 may provide a sex-specific basis for epigenetic effects of pre-pregnancy BMI.


Assuntos
Índice de Massa Corporal , MicroRNAs/genética , Placenta/fisiologia , Adulto , Peso ao Nascer , Estudos de Coortes , Feminino , Expressão Gênica , Humanos , Recém-Nascido , Modelos Lineares , Mães , Gravidez
16.
Environ Health ; 16(1): 52, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583124

RESUMO

BACKGROUND: Air pollution exposure during pregnancy has been associated with adverse birth outcomes and health problems later in life. We investigated sex-specific transcriptomic responses to gestational long- and short-term exposure to particulate matter with a diameter < 2.5 µm (PM2.5) in order to elucidate potential underlying mechanisms of action. METHODS: Whole genome gene expression was investigated in cord blood of 142 mother-newborn pairs that were enrolled in the ENVIRONAGE birth cohort. Daily PM2.5 exposure levels were calculated for each mother's home address using a spatial-temporal interpolation model in combination with a dispersion model to estimate both long- (annual average before delivery) and short- (last month of pregnancy) term exposure. We explored the association between gene expression levels and PM2.5 exposure, and identified modulated pathways by overrepresentation analysis and gene set enrichment analysis. RESULTS: Some processes were altered in both sexes for long- (e.g. DNA damage) or short-term exposure (e.g. olfactory signaling). For long-term exposure in boys neurodevelopment and RhoA pathways were modulated, while in girls defensin expression was down-regulated. For short-term exposure we identified pathways related to synaptic transmission and mitochondrial function (boys) and immune response (girls). CONCLUSIONS: This is the first whole genome gene expression study in cord blood to identify sex-specific pathways altered by PM2.5. The identified transcriptome pathways could provide new molecular insights as to the interaction pattern of early life PM2.5 exposure with the biological development of the fetus.


Assuntos
Exposição Materna , Material Particulado/toxicidade , Transcriptoma/efeitos dos fármacos , Adolescente , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Bélgica , Estudos de Coortes , Feminino , Sangue Fetal/química , Humanos , Recém-Nascido , Masculino , Material Particulado/análise , Gravidez , Fatores Sexuais , Adulto Jovem
18.
Environ Health Perspect ; 125(4): 660-669, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27740511

RESUMO

BACKGROUND: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. OBJECTIVES: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. METHODS: Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM10 in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway analysis was performed using Gene Set Enrichment Analysis. Average daily PM2.5 and PM10 exposures over 2-years were estimated for each participant's residential address using spatiotemporal interpolation in combination with a dispersion model. RESULTS: Average long-term PM10 was 25.9 (± 5.4) and 23.7 (± 2.3) µg/m3 in the discovery and validation cohorts, respectively. In discovery analysis, associations between PM10 and the expression of individual genes differed by sex. In the validation cohort, long-term PM10 was associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p = 0.053) in women. AKAP6 and LIMK1 were significantly associated with PM10 in women, although associations differed in direction between the discovery and validation cohorts. Expression of the eight candidate genes in the discovery cohort differentiated between validation cohort participants with high versus low PM10 exposure (area under the receiver operating curve = 0.92; 95% CI: 0.85, 1.00; p = 0.0002 in men, 0.86; 95% CI: 0.76, 0.96; p = 0.004 in women). CONCLUSIONS: Expression of the sex-specific candidate genes identified in the discovery population predicted PM10 exposure in an independent cohort of adults from the same area. Confirmation in other populations may further support this as a new approach for exposure assessment, and may contribute to the discovery of molecular mechanisms for PM-induced health effects.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Material Particulado , Doenças Cardiovasculares/epidemiologia , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Doenças Respiratórias/epidemiologia , Fatores Sexuais
19.
Carcinogenesis ; 35(1): 201-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23940306

RESUMO

One of the main challenges of toxicology is the accurate prediction of compound carcinogenicity. The default test model for assessing chemical carcinogenicity, the 2 year rodent cancer bioassay, is currently criticized because of its limited specificity. With increased societal attention and new legislation against animal testing, toxicologists urgently need an alternative to the current rodent bioassays for chemical cancer risk assessment. Toxicogenomics approaches propose to use global high-throughput technologies (transcriptomics, proteomics and metabolomics) to study the toxic effect of compounds on a biological system. Here, we demonstrate the improvement of transcriptomics assay consisting of primary human hepatocytes to predict the putative liver carcinogenicity of several compounds by applying the connectivity map methodology. Our analyses underline that connectivity mapping is useful for predicting compound carcinogenicity by connecting in vivo expression profiles from human cancer tissue samples with in vitro toxicogenomics data sets. Furthermore, the importance of time and dose effect on carcinogenicity prediction is demonstrated, showing best prediction for low dose and 24 h exposure of potential carcinogens.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/induzido quimicamente , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/induzido quimicamente , Reprodutibilidade dos Testes , Toxicogenética/métodos
20.
Mutagenesis ; 27(6): 645-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22914676

RESUMO

The γH2AX assay has recently been suggested as a new in vitro assay for detecting genotoxic (GTX) properties of chemicals. This assay is based on the phosphorylation of H2AX histone in response to DNA damage [i.e. induction of double-strand breaks (DSBs)]. Quantification of γH2AX foci using flow cytometry can rapidly detect DNA damage induced by chemicals that cause DNA DSBs. Up to now, only few compounds have been tested with this assay. The main goal of this study was to compare the performance of this automated γH2AX assay with that of standard in vitro genotoxicity assays in predicting in vivo genotoxicity. HepG2 cells were exposed to 64 selected compounds with known GTX properties and subsequently analysed for induction of γH2AX foci. The results of this assay were compared with public data from standard in vitro genotoxicity tests. Accuracy, sensitivity and specificity in predicting in vivo genotoxicity, using the γH2AX assay alone or in combinations with conventional assays, were calculated. Both the γH2AX assay and the bacterial mutagenicity test (Ames) were highly specific for in vivo GTX, whereas chromosomal aberration/micronucleus test (CA/MN) resulted in highest sensitivity. The currently widely used in vitro genotoxicity test battery-Ames test, mouse lymphoma assay (MLA) and CA/MN test-resulted in low accuracy (55-65%) to predict in vivo genotoxicity. Interestingly, the inclusion of γH2AX assay in the standard battery, instead of MLA assay, resulted in higher accuracy (62-70%) compared with other combinations. Advantage of the γH2AX assay in HepG2 cells is its high sensitivity to detect DNA-reactive GTX compounds, although the reduced sensitivity for compounds that require metabolic activation needs to be improved. In conclusion, the automated γH2AX assay can be a useful, fast and cost-effective human cell-based tool for early screening of compounds for in vivo genotoxicity.


Assuntos
Dano ao DNA , Histonas/metabolismo , Testes de Mutagenicidade/métodos , Carcinógenos/toxicidade , Aberrações Cromossômicas , Relação Dose-Resposta a Droga , Citometria de Fluxo , Células Hep G2 , Histonas/genética , Humanos , Fosforilação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...