Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050430

RESUMO

It is expected that human iPS cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat serious heart diseases. However, the properties and functions of human adult cardiomyocytes and hiPSC-CMs, including cell maturation, differ. In this study, we focused on the temperature dependence of hiPSC-CMs by integrating the temperature regulation system into our sensor platform, which can directly and quantitatively measure their mechanical motion. We measured the beating frequency of hiPSC-CMs at different environmental temperatures and found that the beating frequency increased as the temperature increased. Although the rate at which the beating frequency increased with temperature varied, the temperature at which the beating stopped was relatively stable at approximately 20 °C. The stopping of beating at this temperature was stable, even in immature hiPSC-CMs, and was considered to be a primitive property of cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas Microeletromecânicos , Adulto , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Temperatura , Diferenciação Celular , Miócitos Cardíacos/fisiologia , Células Cultivadas
2.
Sensors (Basel) ; 20(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075243

RESUMO

This paper reports on a microelectromechanical systems (MEMS)-based sensor for pulse wave measurement. The sensor consists of an air chamber with a thin membrane and a 300-nm thick piezoresistive cantilever placed inside the chamber. When the membrane of the chamber is in contact with the skin above a vessel of a subject, the pulse wave of the subject causes the membrane to deform, leading to a change in the chamber pressure. This pressure change results in bending of the cantilever and change in the resistance of the cantilever, hence the pulse wave of the subject can be measured by monitoring the resistance of the cantilever. In this paper, we report the sensor design and fabrication, and demonstrate the measurement of the pulse wave using the fabricated sensor. Finally, measurement of the pulse wave velocity (PWV) is demonstrated by simultaneously measuring pulse waves at two points using the two fabricated sensor devices. Furthermore, the effect of breath holding on PWV is investigated. We showed that the proposed sensor can be used to continuously measure the PWV for each pulse, which indicates the possibility of using the sensor for continuous blood pressure measurement.

3.
Opt Express ; 27(13): 17763-17770, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252731

RESUMO

A current detection surface plasmon resonance (SPR) sensor with an Au grating on an n-Si wafer was proposed. SPR excitation light is illuminated from the backside of the device and diffracted by the grating. Since the diffraction provides matching conditions, SPR can be coupled to the Au/analyte interface. Since the coupled SPR excites free electrons on the Au surface, the SPR can be detected as a current signal by a Schottky barrier diode formed on the Au/n-Si interface. The obtained angular current spectrum showed clear agreement with SPR coupling theory, thereby confirming that the sample on the Au surface can be electrically detected using the proposed sensor.

4.
Sensors (Basel) ; 18(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385726

RESUMO

Ethanol concentration was quantified by the use of a compact surface plasmon resonance (SPR) system, which electrically detects hot electrons via a Schottky barrier. Although it is well known that SPR can be used as bio/chemical sensors, implementation is not necessarily practical, due to the size and cost impediments associated with a system with variable wavelength or angle of incidence. However, scanning capability is not a prerequisite if the objective is to use SPR in a sensor. It is possible to build a small, inexpensive SPR sensor if the optics have no moving parts and a Schottky barrier is used for electrical current detection in place of a photodetector. This article reports on the design and performance of such a novel SPR sensor, and its application for quantifying ethanol concentration. As the concentration of ethanol is increased, the change in the angle dependence of the SPR current is observed. This change can be understood as a superposition of contributions of SPR coupled with the +3rd- and -3rd-order diffraction. Moreover, real-time monitoring of ethanol concentration was demonstrated using the proposed SPR system.

5.
Langmuir ; 32(37): 9523-9, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27603591

RESUMO

Surfaces covered with hydrophobic micro-/nanoscale textures can allow water droplets to slide easily because of low contact angle hysteresis. In contrast to the case of a droplet sliding on a smooth surface, when a droplet slides on a textured surface, it must recede from the textures at its rear edge and the resultant depinning events induce a capillary wave on the surface of the droplet. Although this depinning-induced capillary wave can be observed to some extent through high-speed imaging, important parameters of the wave, such as the wavelength and frequency, and the factors that determine these parameters are not fully understood. We report direct measurements of this depinning-induced capillary wave using microelectromechanical systems (MEMS)-based force sensors fabricated on a textured surface. Such sensor measurements reveal the frequency of the vibration occurring on the surface of the droplet, from which it is possible to calculate the wavelength of the capillary wave. We show that the frequency and wavelength of the depinning-induced capillary wave during the sliding of a water droplet on a micropillar array depend upon neither the size of the droplet nor its sliding velocity. However, the frequency (wavelength) decreases (increases) as the pitch of the micropillar array increases. We argue that the wavelength of the depinning-induced capillary wave is equal to the maximum length of the liquid bridges that develop at the micropillars before depinning. This hypothesis is confirmed by comparing the wavelengths obtained from the sensor measurements to the maximum liquid-bridge lengths calculated from observations using a high-speed camera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...