RESUMO
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
Assuntos
Apoptose , Ciclo Celular , Neoplasias Associadas a Colite , Inflamação , Animais , Camundongos , Apoptose/genética , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/etiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Ciclo Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/etiologia , Regulação Neoplásica da Expressão Gênica , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Colite/genética , Colite/metabolismo , Colite/complicações , Colite/induzido quimicamente , Colite/patologia , MasculinoRESUMO
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Assuntos
Lipopolissacarídeos , Macrófagos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Hipóxia/genética , Monócitos , Suscetibilidade a Doenças/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismoRESUMO
Microplastic pollution poses a threat to human health. It is possible that the increase in the incidence of inflammatory bowel disease is associated with exposure to microplastics. We investigated the effect of the consumption of polystyrene microparticles with a diameter of 5 µm at a dose of 2.3 mg/kg/day for 6 weeks on morphological changes in the colons of healthy male C57BL/6 mice and of mice with acute colitis induced by a 1% dextran sulfate sodium solution (DSS). In healthy mice, microplastics caused an increase in the number of endocrine cells, an increase in the content of highly sulfated mucins in goblet cells, an increase in the number of cells in the lamina propria, and a decrease in the volume fraction of macrophages. Microplastic consumption caused more severe acute colitis, which is characterized by a greater prevalence of ulcers and inflammation and a decrease in the content of neutral mucins in goblet cells.
RESUMO
BACKGROUND: the general lifespan has been prolonged greatly during the past century, and the incidence of age-associated diseases, including neurodegenerative ones, has increased as well. However, modelling of age-related pathologies is mostly conducted on adult rodents. We studied morphofunctional changes in the brain and peripheral blood of adult Wistar rats in comparison with old Wistar rats to determine age-related physiological changes and differences in adaptive reactions to AlCl3 exposure. METHODS: the work was performed on adult and old male Wistar rats. The animals consumed a 100 mg/kg solution of AlCl3 each day for 60 days. Morphological changes of neurons and microglia, mRNA expression levels of pro-inflammatory and anti-inflammatory cytokines, microglia activation markers, amyloid-related proteins, and hallmarks of cellular senescence, monocyte, and lymphocyte subpopulations in the peripheral blood were examined. RESULTS: old rats showed increasing hyperchromic neurons in the hippocampus; activation of microglia; upregulation of pro-inflammatory cytokines and cellular senescence markers; downregulation of anti-inflammatory cytokines; and Hif-1a and a decrease in B-cells and monocyte in peripheral blood. CONCLUSION: compared to young animals, aged rats respond to aluminum exposure with a severe decline of most cells' function and irreversible neuronal loss. Regarding all reported data, neurodegeneration modelling and investigating of factors capable of accelerating or preventing it should be performed in experimental work on aged animals.
RESUMO
Alzheimer's disease is one of the most common age-related neurodegenerative disorders. The main theory of Alzheimer's disease progress is the amyloid-ß cascade hypothesis. However, the initial mechanisms of insoluble forms of amyloid-ß formation and hyperphosphorylated tau protein in neurons remain unclear. One of the factors, which might play a key role in senile plaques and tau fibrils generation due to Alzheimer's disease, is inflammaging, i.e., systemic chronic low-grade age-related inflammation. The activation of the proinflammatory cell phenotype is observed during aging, which might be one of the pivotal mechanisms for the development of chronic inflammatory diseases, e.g., atherosclerosis, metabolic syndrome, type 2 diabetes mellitus, and Alzheimer's disease. This review discusses the role of the inflammatory processes in developing neurodegeneration, activated during physiological aging and due to various diseases such as atherosclerosis, obesity, type 2 diabetes mellitus, and depressive disorders.
RESUMO
Hypoxia tolerance of the organism depends on many factors, including age. High newborn organisms tolerance and high level of oxidative stress throughout aging were demonstrated by many studies. However, there is lack of investigations reflecting the expression of key hypoxia-inducible factor HIF in different age organisms in correlation to levels of pro-inflammatory and anti-inflammatory cytokines. Liver is a sensitive to hypoxia organ, and is an important organ in providing an acute reaction to infections - it synthesizes acute inflammation phase proteins, in particular, C-reactive protein. The aim of study was to determine relationship between age-related tolerance to hypoxia and HIF-1 and PHD2 (prolyl hydroxylase domain protein) expression levels in the liver and the production of cytokines in the spleen in newborn, prepubertal and adult Wistar rats. Newborn rats are characterized by high mRNA Hif-1α expression level in the liver, accompanied by a low content of HIF-1 protein and high level of PHD2. The growth in HIF-1α protein level throughout age is accompanied by the growth of pro-inflammatory cytokines level. Prepubertal animals are the least hypoxia resistant and their HIF-1α mRNA expression level was higher than in adult animals. The PHD2 activity in prepubertal animals was significantly reduced in comparison to newborn rats, and the HIF-1α protein level did not change. Further studies require the identification of additional mechanisms, determining the regulation of the HIF-1α level in prepubertal animals.
RESUMO
A problem of the analysis of stochastic effects in multirhythmic nonlinear systems is investigated on the basis of the conceptual neuron map-based model proposed by Rulkov. A parameter zone with diverse scenarios of the coexistence of oscillatory regimes, both spiking and bursting, was revealed and studied. Noise-induced transitions between basins of periodic attractors are analyzed parametrically by statistics extracted from numerical simulations and by a theoretical approach using the stochastic sensitivity technique. Chaos-order transformations of dynamics caused by random forcing are discussed.
RESUMO
It is a common fact, that the content of sex hormones in humans and animals varies in different age periods. The functional state of the immune system also changes with age. However, sex differences studies of inflammatory and immune responses during puberty prevail in literature. Investigation of immune responses to LPS peculiarities in prepubertal females and males may contribute to the development of more effective immunotherapy and minimize side effects of children vaccination. Therefore, the aim of this work was to investigate the LPS-induced SIRS sex differences in prepubertal Wistar rats. Despite the absence of sex differences in estradiol and testosterone levels, LPS-induced inflammatory changes in liver and lungs are more pronounced among males. Males demonstrate the increasing neopterin, corticosterone levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Not less important is that in females, demonstrating less morphological changes in liver and lungs, endotoxin level is tenfold higher, and corticosterone level decreases. Thus, endotoxin cannot be used as a marker of the severity of multiple organ failure in prepubertal period. The LPS-induced immune reactions in females and males are similar and are characterized by immunosuppression. Both females and males have decreased production of cytokines (IL-2, IL-4, TNF-α, TGF-ß) and the absolute number of CD3 + and CD3 + CD8 + lymphocytes in blood. The acute atrophy of thymus and apoptosis of thymic cells are revealed in animals of both sexes. However, the number of CD3 + CD4 + T-helpers and CD4 + CD25 + Foxp3 + T-cells decreases only in females with SIRS, and in males there was a decrease of CD45R + B-cells. The least expressed sex differences in immune responses in the prepubertal period can be determined by the low levels of sex steroids and the absence of their immunomodulatory effect. Further studies require the identification of mechanisms, determining the sex differences in the inflammatory and immune responses in prepubertal animals.
Assuntos
Imunidade/fisiologia , Fígado/imunologia , Pulmão/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Animais , Corticosterona/sangue , Endotoxinas/sangue , Estradiol/sangue , Feminino , Fígado/patologia , Pulmão/patologia , Masculino , Ratos , Ratos Wistar , Fatores Sexuais , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/patologia , Testosterona/sangueRESUMO
On the model of the systemic inflammatory response (SIRS), induced by lipopolysaccharide (LPS), the morphological and functional changes in the thymus and spleen and the subpopulation composition of peripheral blood lymphocytes of rats differing in resistance to hypoxia were studied. It was demonstrated that the level of endotoxin in blood serum after 3 hours of LPS administration in susceptible-to-hypoxia rats was 64 times higher than in the control group, while in tolerant-to-hypoxia animals it was only 8 times higher in 6 hours. After 24 hours of LPS injection, only in susceptible-to-hypoxia rats did the level of C-reactive protein in blood serum increase. There is a difference in the dynamics of morphological changes of lymphoid organs after LPS injection in tolerant- and susceptible-to-hypoxia animals. After 3 hours of LPS administration, the tolerant-to-hypoxia rats showed no changes in the thymus, spleen, and subpopulation composition of lymphocytes in peripheral blood. After 6 hours there was only a decrease in B-lymphocytes and increase in cytotoxic T-lymphocytes and NK cells. After 1 day of LPS injection, the tolerant-to-hypoxia rats had devastation in PALS of the spleen. After 3 hours of LPS injection the susceptible-to-hypoxia animals had reactive changes in the lymphoid organs: decrease of the thymus cortex, narrowing of the marginal zones of spleen lymphoid follicles, widening of their germinal centers, and a decrease in the absolute number of cytotoxic T-lymphocytes, NK cells, and B-lymphocytes. After 24 hours of LPS injection the tolerant-to-hypoxia animals had a greater absolute number of T-lymphocytes and NK cells in comparison with the susceptible rats. Thus, in animals with different resistance to hypoxia the LPS-induced SIRS is characterized by different dynamics of morphological and functional changes of the thymus and spleen. The obtained data will serve as a basis for the development of new individual approaches to the prevention and treatment of infectious and inflammatory diseases.
RESUMO
PURPOSE: The aim of the study was to characterize the severity of the systemic inflammatory response induced by lipopolysaccharide (LPS) in animals with different resistance levels to hypoxia. MATERIALS AND METHODS: Two to three months old male Wistar rats (220-240 g) were divided according to hypoxia tolerance in a hypobaric chamber. After a month, they were injected intraperitoneally with Escherichia coli LPS at a dose of 1.5 mg/kg. After 3, 6 and 24 hours of LPS injection, we studied the levels of IL-1ß, C-reactive protein (CRP) and TGF-ß in the serum, the expression of Hif-1α and Nf-kb in the liver, morphological disorders in the lung and ex vivo production of IL-10 by splenic cells activated by ConA. RESULTS: In the early periods after the injection of LPS, increase in Nf-kb expression in the liver was observed only in the rats susceptible to hypoxia. After 6 hours of LPS injection, the number of neutrophils in the interalveolar septa of the lungs of rats susceptible to hypoxia was higher than in tolerant rats. This points to the development of more pronounced LPS-induced inflammation in the rats susceptible to hypoxia and is accompanied by increased expression of Hif-1α in the liver after 6 hours of LPS administration, serum IL-1ß level after 3 hours and CRP level after 24 hours. The production of the anti-inflammatory cytokine IL-10 by the spleen was significantly decreased after 6 hours of LPS injection only in the animals tolerant to hypoxia. After 24 hours of LPS injection, a significant decrease in serum TGF-ß level occurred in the rats tolerant to hypoxia in comparison with the control group, which improved the survival rates of the animals. CONCLUSION: We have demonstrated the differences in the severity of the LPS-induced inflammatory response in male Wistar rats with different resistance levels to hypoxia. Rats susceptible to hypoxia are characterized by a more pronounced inflammatory response induced by LPS.