Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 80(6): 1185-1195, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31799962

RESUMO

In this study, a full-scale survey was conducted of a sludge landfill that had been sealed for 10 years to investigate sludge properties, leachate characteristics and microbial community structure. Vertical distribution of sludge and leachate pollutants in the landfill site showed that the sludge and soluble pollutants in the leachate were both distributed almost evenly even after long-term anaerobic digestion, and higher concentrations of soluble pollutants and richness of microbial community were observed at the middle layer. Compared to dewatered excess sludge generated from the activated sludge process before landfill, landfill sludge had a much lower organic content (28.1%), smaller particle size and worse dewaterability. Compared to municipal waste landfill, sludge landfill generated leachate with a lower concentration of organic substances, and comparable concentrations of nitrogenous and phosphorus pollutants. Bacterial community analysis by Illumina MiSeq sequencing showed that Proteobacteria, Firmicutes, Chloroflexi, Actinobacteria and Bacteroidetes were the major phyla, and some new genera (Methylocystaceae, Mariniphaga and Aminicenantes) were enriched in the sludge landfill. Archaeal community analysis showed that aceticlastic methanogenesis by Methanosaeta and Methanosarcina was the main pathway for methane production in the sludge landfill, in contrast to waste landfill with hydrogenotrophic methanogenesis as the main pathway.


Assuntos
Microbiota , Poluentes Químicos da Água , Esgotos , Inquéritos e Questionários , Instalações de Eliminação de Resíduos , Pesos e Medidas
2.
Water Res ; 160: 167-177, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31146188

RESUMO

In this study, landfill sludge (LS) was excavated from a 10 year old full-scale sludge landfill and used to investigate effects of dosage on sludge dewaterability, rheological properties and extracellular polymeric substances (EPS) variations by FeCl3-lime conditioning. LS had lower content of organic matters (0.28) and smaller particle size than excess sludge (ES), and greatly lower viscosity and high flowability. The suitable concentration of LS for conditioning (107.2-118.6 g/L) was much higher than that of ES (34 g/L) by rheological analysis. Both FeCl3 and lime improved dewaterability of LS and caused decline of slime and loosely bound EPS (LB-EPS). FeCl3 destroyed proteins in slime and LB-EPS owing to coagulation and acidification effects, weakened internal structure strength, and thus improved dewaterability. Lime addition caused alkaline hydrolysis of polysaccharides in slime and LB-EPS, reduced viscosity and flowability, and improved flowability and dewaterability for LS. The optimal dosage for dewatering using 57.6 mg lime/g dried solids (DS) and 53.6 mg FeCl3/g DS was obtained by using an integrative response surface methodology (RSM) coupled nonlinear programming approach under water content constraint of 55%. The integrative optimization achieved 26.0% cost saving in comparison to RSM optimized condition.


Assuntos
Compostos de Cálcio , Esgotos , Óxidos , Instalações de Eliminação de Resíduos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...