Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 14(5): 230315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38806144

RESUMO

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Assuntos
Candida glabrata , Células Dendríticas , Antígeno de Macrófago 1 , Linfócitos T Reguladores , beta-Glucanas , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Animais , Antígeno de Macrófago 1/metabolismo , Camundongos , Lectinas Tipo C/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Cell Infect Microbiol ; 10: 566661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552998

RESUMO

Host-Candida interaction has been broadly studied during Candida albicans infection, with a progressive shift in focus toward non-albicans Candida species. C. krusei is an emerging multidrug resistant pathogen causing rising morbidity and mortality worldwide. Therefore, understanding the interplay between the host immune system and C. krusei is critically important. Candia cell wall ß-glucans play significant roles in the induction of host protective immune responses. However, it remains unclear how C. krusei ß-glucan impacts dendritic cell (DC) responses. In this study, we investigated DC maturation and function in response to ß-glucans isolated from the cell walls of C. albicans, C. tropicalis, and C. krusei. These three distinct Candida ß-glucans had differential effects on expression of the DC marker, CD11c, and on DC maturation. Furthermore, bone-marrow derived DCs (BMDCs) showed enhanced cytokine responses characterized by substantial interleukin (IL)-10 production following C. krusei ß-glucan stimulation. BMDCs stimulated with C. krusei ß-glucan augmented IL-10 production by T cells in tandem with increased IL-10 production by BMDCs. Inhibition of dectin-1 ligation demonstrated that the interactions between dectin-1 on DCs and cell wall ß-glucans varied depending on the Candida species. The effects of C. krusei ß-glucan were partially dependent on dectin-1, and this dependence, in part, led to distinct DC responses. Our study provides new insights into immune regulation by C. krusei cell wall components. These data may be of use in the development of new clinical approaches for treatment of patients with C. krusei infection.


Assuntos
beta-Glucanas , Candida albicans , Células Dendríticas , Humanos , Interleucina-10 , Lectinas Tipo C , Pichia , Linfócitos T
3.
Fish Shellfish Immunol ; 72: 86-94, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29017938

RESUMO

The viral responsive protein 15 from black tiger shrimp Penaeus monodon (PmVRP15), is highly up-regulated and produced in the hemocytes of shrimp with white spot syndrome virus (WSSV) infection. To investigate the differential expression of genes from P. monodon hemocytes that are involved in WSSV infection under the influence of PmVRP15 expression, suppression subtractive hybridization (SSH) of PmVRP15-silenced shrimp infected with WSSV was performed. The 189 cDNA clones of the forward library were generated by subtracting the cDNAs from WSSV-infected and PmVRP15 knockdown shrimp with cDNAs from WSSV-infected and GFP knockdown shrimp. For the opposite subtraction, the 176 cDNA clones in the reverse library was an alternative set of genes in WSSV-infected shrimp hemocytes in the presence of PmVRP15 expression. The abundant genes in forward SSH library had a defense/homeostasis of 26%, energy/metabolism of 23% and in the reverse SSH library a hypothetical protein with unknown function was found (30%). The differential expressed immune-related genes from each library were selected for expression analysis using qRT-PCR. All selected genes from the forward library showed high up-regulation in the WSSV-challenged PmVRP15 knockdown group as expected. Interestingly, PmHHAP, a hemocyte homeostasis associated protein, and granulin-like protein, a conserved growth factor, are extremely up-regulated in the absence of PmVRP15 expression in WSSV-infected shrimp. Only transcript level of transglutaminase II, that functions in regulating hematopoietic tissue differentiation and inhibits mature hemocyte production in shrimp, was obviously down-regulated as observed from SSH results. Taken together, our results suggest that PmVRP15 might have a function relevant to hemocyte homeostasis during WSSV infection.


Assuntos
Proteínas de Artrópodes/genética , Regulação da Expressão Gênica , Biblioteca Gênica , Hemócitos/imunologia , Penaeidae/genética , Penaeidae/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Inativação Gênica , Penaeidae/virologia , Reação em Cadeia da Polimerase , Técnicas de Hibridização Subtrativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...