Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 629: 122372, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36351503

RESUMO

Octreotide acetate (OA), a potent octapeptide, is used in the treatment of pituitary adenoma. An approach has been made in the present research to formulate an OA-loaded intranasal in situ gel (OA-ISG) to target pituitary adenoma. To achieve the objective of the present work, OA-ISG was fabricated using cold method, and further optimization was done by 32 factorial design. The optimized formulation was evaluated for gelation temperature, mucoadhesive strength, and % drug release (8 h), and the results were found to be 30.01 ± 0.4 °C, 40.12 ± 0.5 g, and 98.54 ± 0.45 %, respectively. Brain availability of OA was determined through gamma scintigraphy, wherein Cmax for technetium (99mTC) labeled intranasal OA-ISG (99mTC-OA-ISG) was found to be 1.041 % RA/g, and the findings for 99mTC-OA-Solution (intranasal) and 99mTC-OA-Solution (intravenous) were 0.395 % and 0.164 % RA/g, respectively. Consequently, a 3-10-fold increase in brain OA concentrations was observed upon intranasal administration (OA-ISG) as compared to others. Additionally, drug targeting index (100.13), targeting efficiency (10013 %), and direct transport percentage (2564.1 %) corroborate brain targeting of OA via intranasal route. Further, the cytotoxic potential of OA-ISG was screened on human pituitary tumor (GH3) cell lines using MTT assay. The IC50 value was found to be 9.5 µg/mL for OA-ISG, whereas it was 20.1 µg/mL for OA-Solution, thereby confirming the superior results of OA-ISG as compared to OA-Solution. Hence, the developed intranasal OA-ISG can be further explored for establishing its potential clinical safety, and as effective platform for targeted drug delivery to the brain in pituitary adenoma.


Assuntos
Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/metabolismo , Octreotida/metabolismo , Octreotida/farmacologia , Distribuição Tecidual , Administração Intranasal , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Tecnécio , Mucosa Nasal/metabolismo
2.
Int J Pharm ; 607: 121050, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34454028

RESUMO

Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.


Assuntos
Nanopartículas , Poloxâmero , Administração Intranasal , Amissulprida , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Mucosa Nasal , Tamanho da Partícula , Polissacarídeos Bacterianos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...