Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39338662

RESUMO

There has been a recent increase in the frequency of mass disaster events. Following these events, the rapid location of victims is paramount. Currently, the most reliable search method is scent detection dogs, which use their sense of smell to locate victims accurately and efficiently. Despite their efficacy, they have limited working times, can give false positive responses, and involve high costs. Therefore, alternative methods for detecting volatile compounds are needed, such as using electronic noses (e-noses). An e-nose named the 'NOS.E' was developed and has been used successfully to detect VOCs released from human remains in an open-air environment. However, the system's full capabilities are currently unknown, and therefore, this work aimed to evaluate the NOS.E to determine the efficacy of detection and expected sensor response. This was achieved using analytical standards representative of known human ante-mortem and decomposition VOCs. Standards were air diluted in Tedlar gas sampling bags and sampled using the NOS.E. This study concluded that the e-nose could detect and differentiate a range of VOCs prevalent in ante-mortem and decomposition VOC profiles, with an average LOD of 7.9 ppm, across a range of different chemical classes. The NOS.E was then utilized in a simulated mass disaster scenario using donated human cadavers, where the system showed a significant difference between the known human donor and control samples from day 3 post-mortem. Overall, the NOS.E was advantageous: the system had low detection limits while offering portability, shorter sampling times, and lower costs than dogs and benchtop analytical instruments.


Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Desastres , Odorantes/análise , Animais
2.
Forensic Sci Int ; 362: 112155, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067176

RESUMO

Most firearm related homicides involve the deceased being forensically examined within a day or two, however, there are times when bodies have been examined and the fired components removed several days or weeks after death, when the body is in an active or advanced state of decomposition. In these cases, ballistic investigation has been found to be complicated due to the damage to the bullets, however the extent of this is not yet known. To date, there have been no studies investigating the effect of human decomposition and the subsequent analysis of bullets lodged in the body in an Australian context. Herein, seven fired copper jacketed bullets were manually inserted into three specific tissue types; lungs, abdomen and leg muscle (twenty-one bullets in total), of human donors in both cool and warm conditions at the Australian Facility for Taphonomic Experimental Research (AFTER). Bullets were removed every three days for a period of twenty-one days, and each bullet underwent manual microscopic examinations by firearms examiners across Australia. Results have indicated that the bullets corrode quickly in warm conditions, compared to bullets exposed to decomposition in cooler conditions. The results of this study will inform investigators and pathologists of the need to remove and examine fired bullets from decomposed bodies as soon as possible, especially in warm conditions to provide firearms examiners with the best opportunity to link fired bullets to a common source.


Assuntos
Balística Forense , Pulmão , Mudanças Depois da Morte , Ferimentos por Arma de Fogo , Humanos , Balística Forense/métodos , Ferimentos por Arma de Fogo/patologia , Pulmão/patologia , Músculo Esquelético/patologia , Músculo Esquelético/lesões , Temperatura , Abdome , Austrália , Microscopia , Masculino
4.
Microorganisms ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38399721

RESUMO

The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.

5.
Int J Legal Med ; 138(2): 509-518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37491634

RESUMO

Knowledge of the decomposition of vertebrate animals has advanced considerably in recent years and revealed complex interactions among biological and environmental factors that affect rates of decay. Yet this complexity remains to be fully incorporated into research or models of the postmortem interval (PMI). We suggest there is both opportunity and a need to use recent advances in decomposition theory to guide forensic research and its applications to understanding the PMI. Here we synthesise knowledge of the biological and environmental factors driving variation in decomposition and the acknowledged limitations among current models of the PMI. To guide improvement in this area, we introduce a conceptual framework that highlights the multiple interdependencies affecting decay rates throughout the decomposition process. Our framework reinforces the need for a multidisciplinary approach to PMI research, and calls for an adaptive research cycle that aims to reduce uncertainty in PMI estimates via experimentation, modelling, and validation.


Assuntos
Mudanças Depois da Morte , Projetos de Pesquisa , Animais , Autopsia , Patologia Legal
6.
Metabolomics ; 20(1): 9, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129550

RESUMO

INTRODUCTION: Biogenic volatile organic compounds (BVOCs) are emitted by all organisms as intermediate or end-products of metabolic processes. Individual BVOCs perform important physiological, ecological and climatic functions, and collectively constitute the volatilome-which can be reflective of organism taxonomy and health. Although BVOC emissions of tropical benthic reef taxa have recently been the focus of multiple studies, emissions derived from their temperate counterparts have never been characterised. OBJECTIVES: Characterise the volatilomes of key competitors for benthic space among Australian temperate reefs. METHODS: Six fragments/fronds of a temperate coral (Plesiastrea versipora) and a macroalga (Ecklonia radiata) from a Sydney reef site were placed within modified incubation chambers filled with seawater. Organism-produced BVOCs were captured on thermal desorption tubes using a purge-and-trap methodology, and were then analysed using GC × GC - TOFMS and multivariate tests. RESULTS: Analysis detected 55 and 63 BVOCs from P. versipora and E. radiata respectively, with 30 of these common between species. Each taxon was characterised by a similar relative composition of chemical classes within their volatilomes. However, 14 and 10 volatiles were distinctly emitted by either E. radiata or P. versipora respectively, including the halogenated compounds iodomethane, tribromomethane, carbon tetrachloride and trichloromonofluoromethane. While macroalgal cover was 3.7 times greater than coral cover at the sampling site, P. versipora produced on average 17 times more BVOCs per cm2 of live tissue, resulting in an estimated contribution to local BVOC emission that was 4.7 times higher than E. radiata. CONCLUSION: Shifts in benthic community composition could disproportionately impact local marine chemistry and affect how ecosystems contribute to broader BVOC emissions.


Assuntos
Antozoários , Compostos Orgânicos Voláteis , Animais , Ecossistema , Compostos Orgânicos Voláteis/análise , Austrália , Metabolômica , Antozoários/metabolismo
7.
iScience ; 26(8): 107371, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37575194

RESUMO

Human remains are oftentimes located with textile materials, making them a ubiquitous source of physical evidence. Human remains are also frequently discovered in outdoor environments, increasing the exposure to scavenging activity and soft-tissue decomposition. In such cases, postmortem interval (PMI) estimations can be challenging for investigators when attempting to use traditional methods for reconstructive purposes. Lipid analysis is an emerging area of research in forensic taphonomy, with recent works demonstrating success with the detection and monitoring of lipids over time. In this work, generalized linear mixed models (GLMMs) were utilized to perform rigorous statistical analyses on 30 lipid outcomes in combination with accumulated-degree-days (ADD). The results of this study were consistent with recent works, indicating oleic and palmitic acids to be the most suitable lipids in textiles to target for future use as soft-tissue biomarkers of human decomposition. Interspecies differences between humans and pigs were also addressed in this work.

8.
Anal Bioanal Chem ; 415(22): 5487-5498, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423904

RESUMO

Accurate estimation of the postmortem interval (PMI) is crucial in forensic medico-legal investigations to understand case circumstances (e.g. narrowing down list of missing persons or include/exclude suspects). Due to the complex decomposition chemistry, estimation of PMI remains challenging and currently often relies on the subjective visual assessment of gross morphological/taphonomic changes of a body during decomposition or entomological data. The aim of the current study was to investigate the human decomposition process up to 3 months after death and propose novel time-dependent biomarkers (peptide ratios) for the estimation of decomposition time. An untargeted liquid chromatography tandem mass spectrometry-based bottom-up proteomics workflow (ion mobility separated) was utilized to analyse skeletal muscle, collected repeatedly from nine body donors decomposing in an open eucalypt woodland environment in Australia. Additionally, general analytical considerations for large-scale proteomics studies for PMI determination are raised and discussed. Multiple peptide ratios (human origin) were successfully proposed (subgroups < 200 accumulated degree days (ADD), < 655 ADD and < 1535 ADD) as a first step towards generalised, objective biochemical estimation of decomposition time. Furthermore, peptide ratios for donor-specific intrinsic factors (sex and body mass) were found. Search of peptide data against a bacterial database did not yield any results most likely due to the low abundance of bacterial proteins within the collected human biopsy samples. For comprehensive time-dependent modelling, increased donor number would be necessary along with targeted confirmation of proposed peptides. Overall, the presented results provide valuable information that aid in the understanding and estimation of the human decomposition processes.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Mudanças Depois da Morte , Biópsia
9.
ACS Omega ; 8(24): 22042-22054, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360494

RESUMO

Biological volatilome analysis is inherently complex due to the considerable number of compounds (i.e., dimensions) and differences in peak areas by orders of magnitude, between and within compounds found within datasets. Traditional volatilome analysis relies on dimensionality reduction techniques which aid in the selection of compounds that are considered relevant to respective research questions prior to further analysis. Currently, compounds of interest are identified using either supervised or unsupervised statistical methods which assume the data residuals are normally distributed and exhibit linearity. However, biological data often violate the statistical assumptions of these models related to normality and the presence of multiple explanatory variables which are innate to biological samples. In an attempt to address deviations from normality, volatilome data can be log transformed. However, whether the effects of each assessed variable are additive or multiplicative should be considered prior to transformation, as this will impact the effect of each variable on the data. If assumptions of normality and variable effects are not investigated prior to dimensionality reduction, ineffective or erroneous compound dimensionality reduction can impact downstream analyses. It is the aim of this manuscript to assess the impact of single and multivariable statistical models with and without the log transformation to volatilome dimensionality reduction prior to any supervised or unsupervised classification analysis. As a proof of concept, Shingleback lizard (Tiliqua rugosa) volatilomes were collected across their species distribution and from captivity and were assessed. Shingleback volatilomes are suspected to be influenced by multiple explanatory variables related to habitat (Bioregion), sex, parasite presence, total body volume, and captive status. This work determined that the exclusion of relevant multiple explanatory variables from analysis overestimates the effect of Bioregion and the identification of significant compounds. The log transformation increased the number of compounds that were identified as significant, as did analyses that assumed that residuals were normally distributed. Among the methods considered in this work, the most conservative form of dimensionality reduction was achieved through analyzing untransformed data using Monte Carlo tests with multiple explanatory variables.

10.
Forensic Sci Int ; 358: 111745, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37301722

RESUMO

The location of human remains is performed primarily through the aid of cadaver detection dogs, which rely on the malodour produced through decomposition of decaying bodies. Malefactors will attempt to conceal these putrefactive odours through chemical additions such as lime, which is also wrongly believed to accelerate decomposition and prevent the identification of the victim. Despite the frequency of lime in forensic applications, to date no research has been performed to determine its effect on the volatile organic compounds (VOCs) released during human decomposition. This research was therefore conducted to ascertain the effects of hydrated lime on the VOC profile of human remains. Two human donors were used in a field trial at the Australian Facility for Taphonomic Experimental Research (AFTER): one donor was covered with hydrated lime, and the other had no chemical additions acting as a control. VOC samples were collected over a period of 100 days and analysed using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). The volatile samples were accompanied by visual observations of how decomposition progressed. The results showed that lime application decreased the rate of decomposition and decreased total carrion insect activity. Lime increased the abundance of VOCs during the fresh and bloat stages of decay, however the abundance of compounds plateaued during active and advanced decomposition and were much lower than those detected from the control donor. Despite this suppression of VOCs, the study found that dimethyl disulfide and dimethyl trisulfide, key sulfur-containing compounds, were still produced in high quantities, and can thus still be used to locate chemically altered human remains. Knowledge of the effects of lime on human decomposition can inform the training of cadaver detection dogs, and ensure a greater chance at locating victims of crimes or mass disasters.

11.
iScience ; 26(4): 106353, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36994078

RESUMO

The search for missing persons is a major challenge for investigations involving presumed deceased individuals. Currently, the most effective tool is the use of cadaver-detection dogs; however, they are limited by their cost, limited operation times, and lack of granular information reported to the handler. Thus, there is a need for discrete, real-time detection methods that provide searchers explicit information as to whether human-decomposition volatiles are present. A novel e-nose (NOS.E) developed in-house was investigated as a tool to detect a surface-deposited individual over time. The NOS.E was able to detect the victim throughout most stages of decomposition and was influenced by wind parameters. The sensor responses from different chemical classes were compared to chemical class abundance confirmed by two-dimensional gas chromatography - time-of-flight mass spectrometry. The NOS.E demonstrated its ability to detect surface-deposited individuals days and weeks since death, demonstrating its utility as a detection tool.

12.
Forensic Sci Int ; 343: 111547, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608407

RESUMO

The ability to determine the post-mortem interval (PMI) in complex death investigations involving human remains, is a vital task faced by law enforcement. Establishing the PMI in a case can significantly aid in the reconstruction of forensically relevant events surrounding that death. However, due to the complexities surrounding the decomposition of human remains, the determination of the PMI still remains a challenge in some cases. Thus, the identification of biomarkers of human decomposition are an emerging, and essential, area of research. Previous studies have also demonstrated great success in the use of textiles as a host to indirectly capture decomposition by-products. This study reports the successful adaptation and optimisation of an analytical chemical workflow for the targeted analysis of lipids from textiles associated with decomposing human remains using gas-chromatography (GC) coupled with tandem mass spectrometry (MS/MS). This study discusses novel information regarding the complex challenges of matrix effects observed with decomposition samples. In addition, the first lipid profiles obtained from textiles associated with two decomposing human donors from the Australian Facility for Taphonomic Experimental Research (AFTER) using GC-MS/MS are presented.


Assuntos
Mudanças Depois da Morte , Espectrometria de Massas em Tandem , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Restos Mortais , Austrália , Têxteis , Biomarcadores , Lipídeos
13.
Anal Bioanal Chem ; 415(13): 2535-2545, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36539609

RESUMO

A new approach is introduced for rapid and reliable bacteria detection in food. Namely, static headspace-comprehensive two-dimensional gas chromatography (HS-GC × GC) with backflushing. The introduced approach provides fast detection of Escherichia coli (E. coli) in enriched ultra-high-temperature processed (UHT) dairy milk. The presence of E. coli may be indicated by detecting microbial volatile organic compounds emanating from test solutions inoculated with E. coli. In the present investigation, HS-GC × GC analysis is preceded by conventional enrichment in nutrient broth and inoculated samples are clearly discernable from controls following as little as 15 h sample enrichment. Headspace equilibration for 28 min followed by an 8 min GC × GC analysis of enriched test solutions reduces time-to-response by approximately one full day compared to conventional culture-based methods. The presence of ethanol, 1-propanol, and acetaldehyde may be used as a putative marker of E. coli contamination in milk and the introduced approach is able to detect single-cell initial bacterial load. Faster, reliable detection of pathogens and/or spoilage microbes in food products is desirable for the food industry. The described approach has great potential to complement the conventional workflow and be utilised for rapid microbial screening of foodstuff.


Assuntos
Escherichia coli , Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Leite/química , Etanol/análise , Bactérias , Compostos Orgânicos Voláteis/análise
14.
Forensic Sci Int Genet ; 62: 102784, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265334

RESUMO

Shingleback lizards (Tiliqua rugosa) are among the most trafficked native fauna from Australia in the illegal pet trade. There are four morphologically recognised subspecies of shinglebacks, all with differing overseas market values. Shinglebacks from different geographic locales are often trafficked and housed together, which may complicate identifying the State jurisdiction where the poaching event occurred. Additionally, shinglebacks can be housed and trafficked with other species within the same genus, which may complicate DNA analysis, especially in scenarios where indirect evidence (e.g. swabs, faeces) is taken for analysis. In this study, a forensic genetic toolkit was designed and validated to target shingleback DNA for species identification and geographic origin. To do this, field sampling across Australia was conducted to expand the phylogeographic sampling of shinglebacks across their species range and include populations suspected to be poaching hotspots. A commonly used universal reptile primer set (ND4/LEU) was then validated for use in forensic casework related to the genus Tiliqua. Two additional ND4 primer sets were designed and validated. The first primer set was designed and demonstrated to preferentially amplify an ∼510 bp region of the genus Tiliqua over other reptiles and builds on existing data to expand the available phylogeographic database. The second primer set was designed and demonstrated to solely amplify an ∼220 bp region of T. rugosa ND4 over any other reptile species. Through the validation process, all primers were demonstrated to amplify T. rugosa DNA from a variety of sample types (e.g. degraded, low quality and mixed). Two of the primer sets were able to distinguish the genetic lineage of T. rugosa from the phylogeographic database. This work provides the first forensically validated toolkit and phylogeographic genetic database for Squatmate lizards.


Assuntos
Lagartos , Humanos , Animais , Lagartos/genética , Filogeografia , Austrália
15.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156083

RESUMO

The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.e. 'volatilomics'). We characterised volatile profiles of the sea anemone Aiptasia (Exaiptasia diaphana), a model system for cnidarian-dinoflagellate symbiosis, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. We compared volatile profiles between: (1) symbiotic anemones containing their native symbiont, Breviolum minutum; (2) aposymbiotic anemones; and (3) cultured isolates of B. minutum. Overall, 152 BVOCs were detected, and classified into 14 groups based on their chemical structure, the most numerous groups being alkanes and aromatic compounds. A total of 53 BVOCs were differentially abundant between aposymbiotic anemones and B. minutum cultures; 13 between aposymbiotic and symbiotic anemones; and 60 between symbiotic anemones and cultures of B. minutum. More BVOCs were differentially abundant between cultured and symbiotic dinoflagellates than between aposymbiotic and symbiotic anemones, suggesting that symbiosis may modify symbiont physiology more than host physiology. This is the first volatilome analysis of the Aiptasia model system and provides a foundation from which to explore how BVOC production is perturbed under environmental stress, and ultimately the role they play in this important symbiosis.


Assuntos
Dinoflagellida , Anêmonas-do-Mar , Compostos Orgânicos Voláteis , Alcanos , Animais , Dinoflagellida/fisiologia , Anêmonas-do-Mar/fisiologia , Simbiose
16.
Forensic Sci Int ; 323: 110781, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878551

RESUMO

The occurrence of mass disasters has increased worldwide due to changing environments from global warming and a heightened threat of terrorism acts. When these disasters strike, it is imperative to rapidly locate and recover human victims, both the living and deceased. While search and rescue dogs are used to locate the living, cadaver detection dogs are typically tasked with locating the dead. This can prove challenging because commingling of victims is likely to occur during disasters in populated areas which will impact the decomposition process and the resulting odour produced. To date, there has been no research to investigate the process of human decomposition in a mass disaster scenario or to understand which compounds are detectable by cadaver detection dogs. Hence, the current study investigated the human decomposition process and subsequent volatile organic compound (VOC) production in two simulated building collapse scenarios with six human donors placed in each scenario. The human remains were only recovered after a period of one month, during which time VOC samples were collected and analysed using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. A considerable degree of differential decomposition was observed upon recovery of the human remains, which was carried out as a part of a police disaster victim recovery training exercise. The location of the bodies in the disaster area was found to impact the decomposition process. The VOC profile was found to correlate with the decomposition process. Fifteen days following the simulated disaster, the VOC profile changed showing that a detectable change in the decomposition process had occurred. Overall, the changing VOC profile can inform the training of cadaver detection dogs for these unique scenarios.

17.
Talanta ; 221: 121424, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076059

RESUMO

This work demonstrates the first forensic application of GC-ICP-MS for improved investigations of volatile organic compounds originating from a decomposing body. Volatile organic compounds were extracted from the headspace of human remains using sorbent tubes over a total time of 39 days. To account for naturally abundant species, control sites were prepared and sampled accordingly. All samples were spiked with an internal standard to minimise drift effects and errors during sample preparation and further analysis. Compound independent quantification was possible from a single chromatogram with a standard mix containing volatile pesticide compounds representing different mass fractions of target elements for calibration. Phosphorus, sulphur and chlorine were investigated as biologically relevant elements, which potentially form detectable volatile species during decomposition. The limits of detection of these elements in the headspace were 0.7, 5.4 and 1.6 ng/L, respectively. For sulphur, we identified abundant species which increased in concentrations of up to 1310 ng/L in the headspace above the remains. The concentrations were time dependent and show potential as forensic markers to determine post-mortem intervals or decomposition states. The universal quantification, standardisation and the high sensitivity of GC-ICP-MS augments traditional GC-MS analyses.


Assuntos
Compostos de Enxofre , Compostos Orgânicos Voláteis , Cadáver , Medicina Legal , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Compostos Orgânicos Voláteis/análise
18.
J Forensic Sci ; 66(2): 479-490, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33202037

RESUMO

Forensic investigations of single and mass graves often use surface anomalies, including changes to soil and vegetation conditions, to identify potential grave locations. Though numerous resources describe surface anomalies in grave detection, few studies formally investigate the rate at which the surface anomalies return to a natural state; hence, the period the grave is detectable to observers. Understanding these processes can provide guidance as to when ground searches will be an effective strategy for locating graves. We studied three experimental graves and control plots in woodland at the Australian Facility for Taphonomic Experimental Research (Sydney, Australia) to monitor the rate at which surface anomalies change following disturbance. After three years, vegetation cover on all grave sites and control plots had steadily increased but remained substantially less than undisturbed surroundings. Soil anomalies (depressions and cracking) were more pronounced at larger grave sites versus the smaller grave and controls, with leaf litterfall rendering smaller graves difficult to detect beyond 20 months. Similar results were observed in two concurrent burial studies, except where accelerated revegetation appeared to be influenced by mummified remains. Extreme weather events such as heatwaves and heavy rainfall may prolong the detection window for grave sites by hindering vegetation establishment. Observation of grave-indicator vegetation, which exhibited abnormally strong growth 10 months after commencement, suggests that different surface anomalies may have different detection windows. Our findings are environment-specific, but the concepts are applicable globally.

19.
Forensic Sci Med Pathol ; 16(4): 605-612, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32876891

RESUMO

The decomposition of vertebrate cadavers on the soil surface produces nutrient-rich fluids that enter the soil profile, leaving clear evidence of the presence of a cadaver decomposition island. Few studies, however, have described soil physicochemistry under human cadavers, or compared the soil between human and non-human animal models. In this study, we sampled soil to 5 cm depth at distances of 0 cm and 30 cm from cadavers, as well as from control sites 90 cm distant, from five human and three pig cadavers at the Australian Facility for Taphonomic Experimental Research (AFTER). We found that soil moisture, electrical conductivity, nitrate, ammonium, and total phosphorus were higher in soil directly under cadavers (0 cm), with very limited lateral spread beyond 30 cm. These patterns lasted up to 700 days, indicating that key soil nutrients might be useful markers of the location of the decomposition island for up to 2 years. Soil phosphorus was always higher under pigs than humans, suggesting a possible difference in the decomposition and soil processes under these two cadaver types. Our preliminary study highlights the need for further experimental and replicated research to quantify variability in soil properties, and to identify when non-human animals are suitable analogues.


Assuntos
Cadáver , Mudanças Depois da Morte , Solo/química , Compostos de Amônio/análise , Animais , Condutividade Elétrica , Biomarcadores Ambientais , Ciências Forenses , Humanos , Modelos Animais , Nitratos/análise , Nitrogênio/análise , Fósforo/análise , Suínos , Água/análise
20.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337216

RESUMO

Thirdhand exposure to e-cigarette residue is likely to have harmful effects in children http://bit.ly/38a2umw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...