RESUMO
NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.
RESUMO
Here, we present the draft genome sequence of Rhizobium sp. strain RCAM05973 which was isolated from a Cyamopsis tetragonoloba (guar) root nodule. The genome contains 6,937,221 bp in 2 contigs and has a GC content of 60%.
RESUMO
Streptomycetes produce a huge variety of bioactive metabolites, including antibiotics, enzyme inhibitors, pesticides and herbicides, which offer promise for applications in agriculture as plant protection and plant growth-promoting products. The aim of this report was to characterize the biological activities of strain Streptomyces sp. P-56, previously isolated from soil as an insecticidal bacterium. The metabolic complex was obtained from liquid culture of Streptomyces sp. P-56 as dried ethanol extract (DEE) and possessed insecticidal activity against vetch aphid (Medoura viciae Buckt.), cotton aphid (Aphis gossypii Glov.), green peach aphid (Myzus persicae Sulz.), pea aphid (Acyrthosiphon pisum Harr.) and crescent-marked lily aphid (Neomyzus circumflexus Buckt.), as well as two-spotted spider mite (Tetranychus urticae). Insecticidal activity was associated with production of nonactin, which was purified and identified using HPLC-MS and crystallographic techniques. Strain Streptomyces sp. P-56 also showed antibacterial and antifungal activity against various phytopathogenic bacteria and fungi (mostly for Clavibacfer michiganense, Alternaria solani and Sclerotinia libertiana), and possessed a set of plant growth-promoting traits, such as auxin production, ACC deaminase and phosphate solubilization. The possibilities for using this strain as a biopesticide producer and/or biocontrol and a plant growth-promoting microorganism are discussed.
RESUMO
We report the draft genome sequence of Cupriavidus sp. strain D39, associated with the roots of pea plants. The genome is characterized by a GC content of 63.62% and a total length of 7.7 Mbp and contains several putative genes associated with resistance to metals and plant growth promotion.
RESUMO
Drought and heavy metals seriously affect plant growth and the biodiversity of the associated rhizosphere microbiomes, which, in turn, could be involved in the adaptation of plants to these environmental stresses. Rhizosphere soil was collected from a three-factor pot experiment, where pea line SGE and its Cd-tolerant mutant SGECdt were cultivated under both optimal and limited water conditions and treated with a toxic Cd concentration. The taxonomic structure of the prokaryotic rhizosphere microbiome was analyzed with the high-throughput sequencing of 16S rRNA amplicon libraries. A permutation test demonstrated statistically significant effects of Cd and water stress but not of pea genotype on the rhizosphere microbiome structure. Phylogenetic isometric log-ratio data transformation identified the taxonomic balances that were affected by abiotic factors and pea genotypes. A small number of significant (log ratio [-3.0:+3.0]) and phylogenetically deep balances characterized water stress, while a larger number of weak (log ratio [-0.8:+0.8]) phylogenetically lower balances described the influence of the plant genotype. Stress caused by cadmium took on an intermediate position. The main conclusion of the study is that the most powerful factor affecting the rhizosphere microbiome was water stress, and the weakest factor was plant genotype since it demonstrated a very weak transformation of the taxonomic structure of rhizosphere microbiomes in terms of alpha diversity indices, beta diversity, and the log ratio values of taxonomic balances.
RESUMO
Guar (Cyamopsis tetragonoloba (L.) Taub.) is an annual legume crop native to India and Pakistan. Seeds of the plant serve as a source of galactomannan polysaccharide (guar gum) used in the food industry as a stabilizer (E412) and as a gelling agent in oil and gas fracturing fluids. There were several attempts to introduce this crop to countries of more northern latitudes. However, guar is a plant of a short photoperiod, therefore, its introduction, for example, to Russia is complicated by a long day length during the growing season. Breeding of new guar varieties insensitive to photoperiod slowed down due to the lack of information on functional molecular markers, which, in turn, requires information on guar genome. Modern breeding strategies, e.g., genomic predictions, benefit from integration of multi-omics approaches such as transcriptome, proteome and metabolome assays. Here we present an attempt to use transcriptome-metabolome integration to understand the genetic determination of flowering time variation among guar plants that differ in their photoperiod sensitivity. This study was performed on nine early- and six delayed-flowering guar varieties with the goal to find a connection between 63 metabolites and 1,067 differentially expressed transcripts using Shiny GAM approach. For the key biomarker of flowering in guar myo-inositol we also evaluated the KEGG biochemical pathway maps available for Arabidopsis thaliana. We found that the phosphatidylinositol signaling pathway is initiated in guar plants that are ready for flowering through the activation of the phospholipase C (PLC) gene, resulting in an exponential increase in the amount of myo-inositol in its free form observed on GC-MS chromatograms. The signaling pathway is performed by suppression of myo-inositol phosphate kinases (phosphorylation) and alternative overexpression of phosphatases (dephosphorylation). Our study suggests that metabolome and transcriptome information taken together, provide valuable information about biomarkers that can be used as a tool for marker-assisted breeding, metabolomics and functional genomics of this important legume crop.
Assuntos
Cyamopsis/genética , Redes e Vias Metabólicas/genética , Metaboloma/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Galactanos/genética , Galactanos/metabolismo , Perfilação da Expressão Gênica , Humanos , Mananas/genética , Mananas/metabolismo , Fotoperíodo , Desenvolvimento Vegetal/genética , Gomas Vegetais/genética , Gomas Vegetais/metabolismoRESUMO
The Crimean autochthonous grape varieties are unique by their origin and serve as a valuable source for breeding new cultivars with increased salt and frost resistance, as well as high-quality berries. However, they suffer from fungal pathogens, as the dry and hot summer months contribute to the epiphytotic course of diseases. An increase in the resistance of Crimean grape varieties is currently achieved through interspecific hybridization. In this study, we describe the genetic and agrobiological diversity of three hybrid populations obtained using the Vitis interspecific hybrid 'Magarach 31-77-10' as a female parent and Muscadinia rotundifolia × Vitis vinifera BC5 hybrid plants as male parents. The hybrid nature of the populations was assessed using RADseq high-throughput genotyping. We discovered 12,734 SNPs, which were common to all three hybrid populations. We also proved with the SSR markers that the strong powdery and downy mildew resistance of the paternal genotypes is determined by the dominant Run1/Rpv1 locus inherited from M. rotundifolia. As a result, the disease development score (R, %) for both mildew diseases in the female parent 'Magarach 31-77-10' was three times higher than in male parents 2000-305-143 and 2000-305-163 over two years of phytopathological assessment. The highest values of yield-contributing traits (average bunch weight ~197 g and 1.3 kg as yield per plant) were detected in the population 4-11 (âM. No. 31-77-10 × 2000-305-163). Despite the epiphytotic development of PM, the spread of oidium to the vegetative organs of hybrids 4-11 did not exceed 20%. Some hybrid genotypes with high productivity and resistance to pathogens were selected for further assessment as promising candidates for new varieties.
RESUMO
BACKGROUND: Restriction-site associated DNA sequencing (RADseq) technology was recently employed to identify a large number of single nucleotide polymorphisms (SNP) for linkage mapping of a North American and Eastern Asian Populus species. However, there is also the need for high-density genetic linkage maps for the European aspen (P. tremula) as a tool for further mapping of quantitative trait loci (QTLs) and marker-assisted selection of the Populus species native to Europe. RESULTS: We established a hybrid F1 population from the cross of two aspen parental genotypes diverged in their phenological and morphological traits. We performed RADseq of 122 F1 progenies and two parents yielding 15,732 high-quality SNPs that were successfully identified using the reference genome of P. trichocarpa. 2055 SNPs were employed for the construction of maternal and paternal linkage maps. The maternal linkage map was assembled with 1000 SNPs, containing 19 linkage groups and spanning 3054.9 cM of the genome, with an average distance of 3.05 cM between adjacent markers. The paternal map consisted of 1055 SNPs and the same number of linkage groups with a total length of 3090.56 cM and average interval distance of 2.93 cM. The linkage maps were employed for QTL mapping of one-year-old seedlings height variation. The most significant QTL (LOD = 5.73) was localized to LG5 (96.94 cM) of the male linkage map, explaining 18% of the phenotypic variation. CONCLUSIONS: The set of 15,732 SNPs polymorphic in aspen and high-density genetic linkage maps constructed for the P. tremula intra-specific cross will provide a valuable source for QTL mapping and identification of candidate genes facilitating marker-assisted selection in European aspen.