RESUMO
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all cancers. To improve PDAC therapy, we establish screening systems based on organoid and co-culture technologies and find a payload of antibody-drug conjugate (ADC), a bromodomain and extra-terminal (BET) protein degrader named EBET. We select CEACAM6/CD66c as an ADC target and developed an antibody, #84.7, with minimal reactivity to CEACAM6-expressing normal cells. EBET-conjugated #84.7 (84-EBET) has lethal effects on various PDAC organoids and bystander efficacy on CEACAM6-negative PDAC cells and cancer-associated fibroblasts. In mouse studies, a single injection of 84-EBET induces marked tumor regression in various PDAC-patient-derived xenografts, with a decrease in the inflammatory phenotype of stromal cells and without significant body weight loss. Combination with standard chemotherapy or PD-1 antibody induces more profound and sustained regression without toxicity enhancement. Our preclinical evidence demonstrates potential efficacy by delivering BET protein degrader to PDAC and its microenvironment via CEACAM6-targeted ADC.
Assuntos
Carcinoma Ductal Pancreático , Imunoconjugados , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Antígenos CD , Moléculas de Adesão Celular , Proteínas Ligadas por GPIRESUMO
Asymmetric total synthesis of (-)-morphine has been accomplished in 18â steps from commercially available 7-methoxy-2-tetralone. Our synthesis features a simple transformation from a readily prepared chiral intermediate, construction of the E-ring by acid-mediated cyclization, and singlet oxygen-mediated manipulation of the C-ring. Transformation of the final stage involves construction of the morphinan skeleton by means of 1,6-addition of in situ generated secondary amine.
Assuntos
Morfina/síntese química , Ciclização , Morfina/química , Oxigênio Singlete/química , Estereoisomerismo , Tetralonas/químicaRESUMO
Eudistominâ C (EudiC), a natural product, shows potent antitumor and antiviral activities, but the target molecule and the mechanism of action remain to be revealed. Here, we show that the 40Sâ ribosome is the target in EudiC cytotoxicity. We isolated EudiC-resistant mutants from a multidrug-sensitive yeast strain, and a genetic analysis classified these YER (yeast EudiC resistance) mutants into three complementation groups. A genome-wide study revealed that the YER1-6 mutation is in the uS11 gene (RPS14A). Biotinylated EudiC pulled down Rps14p-containing complexes from 40S and 80Sâ ribosomes, but not from the 60Sâ ribosome. EudiC strongly inhibited translation of the wild-type strain but not of YER1-6 in cells and in vitro. These results indicate that EudiC is a protein synthesis inhibitor targeting the uS11-containing ribosomal subunit, and shows cytotoxicity by inhibiting protein translation.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Carbolinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Subunidades Ribossômicas Menores de Eucariotos/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antivirais/química , Antivirais/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Carbolinas/química , Carbolinas/isolamento & purificação , Modelos Moleculares , Estrutura MolecularRESUMO
A general synthetic methodology toward the erythrina alkaloids has been developed. Inspired by a proposed biosynthetic mechanism, the medium-sized chiral biaryl lactam was asymmetrically transformed into the common core A-D rings by a stereospecific singlet oxygen oxidation of the phenol moiety, followed by a transannular aza-Michael reaction to the dienone functionality. The late-stage manipulation of the oxidation and oxygenation states of the functional groups on the peripheral moieties enabled the flexible syntheses of the erythrina alkaloids.
RESUMO
Assisted by the total syntheses of all the amathaspiramides, six natural products and four synthetic intermediates with partially fluctuating structures were prepared and subjected to a growth inhibition assay in four human cancer cell lines. The results showed amathaspiramides A, C, and E had moderate antiproliferative activity. Examination of the structure-activity relationship revealed the importance of the amine or imine substructure on the pyrrolidine moiety and the 8R stereochemistry on the N-acyl hemiaminal moiety for the antiproliferative activity of amathaspiramide alkaloids.
Assuntos
Alcaloides/química , Alcaloides/farmacologia , Pirazóis/química , Alcaloides/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirazóis/síntese química , Pirazóis/farmacologia , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Conversion of ester moieties into 4-bromophenyl groups was effected by means of a four-step protocol: a Grignard reaction of the ester with allylmagnesium halides, a ring-closing metathesis, dibromocyclopropanation, and an electrocyclic reaction of the dibromocyclopropanes.
RESUMO
Our novel synthetic route to (-)-oxycodone, a semisynthetic opioid analgesic, features a palladium-catalyzed direct intramolecular arylation of an aryl bromide, oxidative dearomatization of a dihydrophenanthrenol, formation of a benzylic quaternary carbon by an intramolecular Michael addition of a malonate moiety, and construction of the morphinan skeleton via a Hofmann rearrangement/lactamization cascade.