Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 18(7): 1486-1502, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34740308

RESUMO

The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785593

RESUMO

Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Lipídeos/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase , Peptidoglicano/biossíntese , Fosfatos de Poli-Isoprenil , Streptococcus pneumoniae/efeitos dos fármacos , Ácidos Teicoicos/química , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados
3.
Front Microbiol ; 7: 1930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965652

RESUMO

Infections caused by Shiga toxin (Stx)-producing E. coli strains constitute a health problem, as they are problematic to treat. Stx production is a key virulence factor associated with the pathogenicity of enterohaemorrhagic E. coli (EHEC) and can result in the development of haemolytic uremic syndrome in infected patients. The genes encoding Stx are located on temperate lysogenic phages integrated into the bacterial chromosome and expression of the toxin is generally coupled to phage induction through the SOS response. We aimed to find new compounds capable of blocking expression of Stx type 2 (Stx2) as this subtype of Stx is more strongly associated with human disease. High-throughput screening of a small-molecule library identified a lead compound that reduced Stx2 expression in a dose-dependent manner. We show that the optimized compound interferes with the SOS response by directly affecting the activity and oligomerization of RecA, thus limiting phage activation and Stx2 expression. Our work suggests that RecA is highly susceptible to inhibition and that targeting this protein is a viable approach to limiting production of Stx2 by EHEC. This type of approach has the potential to limit production and transfer of other phage induced and transduced determinants.

4.
J Antibiot (Tokyo) ; 68(10): 609-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25944533

RESUMO

Lignans from Schisandra chinensis berries show various pharmacological activities, of which their antioxidative and cytoprotective properties are among the most studied ones. Here, the first report on antibacterial properties of six dibenzocyclooctadiene lignans found in Schisandra spp. is presented. The activity was shown on two related intracellular Gram-negative bacteria Chlamydia pneumoniae and Chlamydia trachomatis upon their infection in human epithelial cells. All six lignans inhibited C. pneumoniae inclusion formation and infectious progeny production. Schisandrin B inhibited C. pneumoniae inclusion formation even when administered 8 h post infection, indicating a target that occurs relatively late within the infection cycle. Upon infection, lignan-pretreated C. pneumoniae elementary bodies had impaired inclusion formation capacity. The presence and substitution pattern of methylenedioxy, methoxy and hydroxyl groups of the lignans had a profound impact on the antichlamydial activity. In addition our data suggest that the antichlamydial activity is not caused only by the antioxidative properties of the lignans. None of the compounds showed inhibition on seven other bacteria, suggesting a degree of selectivity of the antibacterial effect. Taken together, the data presented support a role of the studied lignans as interesting antichlamydial lead compounds.


Assuntos
Antibacterianos/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydophila pneumoniae/crescimento & desenvolvimento , Ciclo-Octanos/farmacologia , Lignanas/farmacologia , Schisandra/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/patogenicidade , Chlamydophila pneumoniae/efeitos dos fármacos , Chlamydophila pneumoniae/patogenicidade , Ciclo-Octanos/química , Ciclo-Octanos/isolamento & purificação , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Testes de Sensibilidade Microbiana , Compostos Policíclicos/farmacologia , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
5.
J Biomol Screen ; 20(2): 285-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25281739

RESUMO

Invasive mycoses have been increasing worldwide, with Candida spp. being the most prevalent fungal pathogen causing high morbidity and mortality in immunocompromised individuals. Only few antimycotics exist, often with severe side effects. Therefore, new antifungal drugs are urgently needed. Because the identification of antifungal compounds depends on fast and reliable assays, we present a new approach based on high-throughput image analysis to define cell morphology. Candida albicans and other fungi of the Candida clade switch between different growth morphologies, from budding yeast to filamentous hyphae. Yeasts are considered proliferative, whereas hyphae are required for invasion and dissemination. Thus, morphotype switching in many Candida spp. is connected to virulence and pathogenesis. It is, consequently, reasonable to presume that morphotype blockers interfere with the virulence, thereby preventing hazardous colonization. Our method efficiently differentiates yeast from hyphal cells using a combination of automated microscopy and image analysis. We selected the parameters length/width ratio and mean object shape to quantitatively discriminate yeasts and hyphae. Notably, Z' factor calculations for these parameters confirmed the suitability of our method for high-throughput screening. As a second stage, we determined cell viability to discriminate morphotype-switching inhibitors from those that are fungicidal. Thus, our method serves as a basis for the identification of candidates for next-generation antimycotics.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Hifas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Candida/genética , Candida/metabolismo , Humanos , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia/métodos
6.
PLoS One ; 9(12): e115115, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25514140

RESUMO

Given the established role of Chlamydia spp. as causative agents of both acute and chronic diseases, search for new antimicrobial agents against these intracellular bacteria is required to promote human health. Isoflavones are naturally occurring phytoestrogens, antioxidants and efflux pump inhibitors, but their therapeutic use is limited by poor water-solubility and intense first-pass metabolism. Here, we report on effects of isoflavones against C. pneumoniae and C. trachomatis and describe buccal permeability and initial formulation development for biochanin A. Biochanin A was the most potent Chlamydia growth inhibitor among the studied isoflavones, with an IC50 = 12 µM on C. pneumoniae inclusion counts and 6.5 µM on infectious progeny production, both determined by immunofluorescent staining of infected epithelial cell cultures. Encouraged by the permeation of biochanin A across porcine buccal mucosa without detectable metabolism, oromucosal film formulations were designed and prepared by a solvent casting method. The film formulations showed improved dissolution rate of biochanin A compared to powder or a physical mixture, presumably due to the solubilizing effect of hydrophilic additives and presence of biochanin A in amorphous state. In summary, biochanin A is a potent inhibitor of Chlamydia spp., and the in vitro dissolution results support the use of a buccal formulation to potentially improve its bioavailability in antichlamydial or other pharmaceutical applications.


Assuntos
Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydophila pneumoniae/crescimento & desenvolvimento , Genisteína/uso terapêutico , Absorção pela Mucosa Oral/fisiologia , Administração Bucal , Animais , Antibacterianos/uso terapêutico , Células Cultivadas , Chlamydia trachomatis/efeitos dos fármacos , Chlamydophila pneumoniae/efeitos dos fármacos , Humanos , Isoflavonas/uso terapêutico , Testes de Sensibilidade Microbiana , Extratos Vegetais/uso terapêutico , Suínos
7.
Antimicrob Agents Chemother ; 58(5): 2968-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24566180

RESUMO

Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential targets and as drug development starting points.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Sulfametoxazol/farmacologia , Sulfisoxazol/farmacologia , Avaliação Pré-Clínica de Medicamentos
8.
Org Biomol Chem ; 12(12): 1942-56, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24531242

RESUMO

Developing new compounds targeting virulence factors (e.g., inhibition of pilus assembly by pilicides) is a promising approach to combating bacterial infection. A high-throughput screening campaign of a library of 17 500 small molecules identified 2-amino-3-acyl-tetrahydrobenzothiophene derivatives (hits 2 and 3) as novel inhibitors of pili-dependent biofilm formation in a uropathogenic Escherichia coli strain UTI89. Based on compounds 2 and 3 as the starting point, we designed and synthesized a series of structurally related analogs and investigated their activity against biofilm formation of E. coli UTI89. Systematic structural modification of the initial hits provided valuable information on their SARs for further optimization. In addition, small structural changes to the parent molecules resulted in low micromolar inhibitors (20-23) of E. coli biofilm development without an effect on bacterial growth. The hit compound 3 and its analog 20 were confirmed to prevent pili formation in a hemagglutination (HA) titer assay and electron microscopy (EM) measurements. These findings suggest that 2-amino-3-acyl-tetrahydrobenzothiophenes may serve as a new class of compounds for further elaboration as antibacterial agents with antivirulence activity.


Assuntos
Anilidas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Tiofenos/farmacologia , Fatores de Virulência/antagonistas & inibidores , Anilidas/síntese química , Anilidas/química , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
9.
Mar Drugs ; 12(2): 799-821, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24477283

RESUMO

Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 µM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.


Assuntos
Actinobacteria/metabolismo , Infecções por Adenoviridae/tratamento farmacológico , Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Infecções por Adenoviridae/virologia , Antivirais/química , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Humanos , Noruega , Estereoisomerismo
10.
BMC Biol ; 11: 99, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24010524

RESUMO

BACKGROUND: Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. RESULTS: We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. Gene expression profiling revealed that Drosophila Nub negatively regulates many genes that are involved in immune and stress responses, while it is a positive regulator of genes involved in differentiation and metabolism. CONCLUSIONS: This study demonstrates that a large number of genes that are activated by NF-κB/Relish in response to infection are normally repressed by the evolutionarily conserved Oct/POU transcription factor Nub. This prevents uncontrolled gene activation and supports the existence of a normal gut flora. We suggest that Nub protein plays an ancient role, shared with mammalian Oct/POU transcription factors, to moderate responses to immune challenge, thereby increasing the tolerance to biotic stress.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Trato Gastrointestinal/microbiologia , Proteínas de Homeodomínio/metabolismo , Microbiota , Fatores do Domínio POU/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Homeodomínio/genética , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores do Domínio POU/genética , Regulação para Cima
11.
PLoS One ; 8(8): e73137, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991176

RESUMO

The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature-sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when Med5/15 or Med15/16 are inactivated together. We identify 25 genes in each double mutant that show a significant change in expression when compared to the corresponding single mutants and to the wild type strain. Importantly, 13 of the 25 identified genes are common for both double mutants. We also find that all strains in which MED15 is inactivated show down-regulation of genes that have been identified as targets for the Ace2 transcriptional activator protein, which is important for progression through the G1 phase of the cell cycle. Supporting this observation, we demonstrate that loss of Med15 leads to a G1 arrest phenotype. Collectively, these findings provide insight into the function of the Mediator Tail module.


Assuntos
Proteínas Fúngicas/fisiologia , Leveduras/metabolismo , Sequência de Bases , Western Blotting , Primers do DNA , Citometria de Fluxo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Letais , Mutação , Reação em Cadeia da Polimerase , Leveduras/genética
12.
Eur J Med Chem ; 54: 637-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22749393

RESUMO

Antibacterial resistance is today a worldwide problem and the demand for new classes of antibacterial agents with new mode of action is enormous. In the strive for new antibacterial agents that inhibit pilus assembly, an important virulence factor, routes to introduce triazoles in position 8 and 2 of ring-fused bicyclic 2-pyridones have been developed. This was made via Sonogashira couplings followed by Huisgen 1,3-dipolar cycloadditions. The method development made it possible to introduce a diverse series of substituted triazoles and their antibacterial properties were tested in a whole cell pili-dependent biofilm assay. Most of the twenty four candidates tested showed low to no activity but interestingly three compounds, one 8-substituted and two 2-substituted, showed promising activities with EC(50)'s between 9 and 50 µM.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Piridonas/química , Triazóis/química , Triazóis/farmacologia , Antibacterianos/síntese química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Técnicas de Química Sintética , Relação Estrutura-Atividade , Triazóis/síntese química
13.
J Biol Chem ; 286(34): 29922-31, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21724850

RESUMO

A class of anti-virulence compounds, the salicylidene acylhydrazides, has been widely reported to block the function of the type three secretion system of several Gram-negative pathogens by a previously unknown mechanism. In this work we provide the first identification of bacterial proteins that are targeted by this group of compounds. We provide evidence that their mode of action is likely to result from a synergistic effect arising from a perturbation of the function of several conserved proteins. We also examine the contribution of selected target proteins to the pathogenicity of Yersinia pseudotuberculosis and to expression of virulence genes in Escherichia coli O157.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157 , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hidrazinas/farmacologia , Fatores de Virulência/biossíntese , Yersinia pseudotuberculosis , Antibacterianos/química , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidade , Hidrazinas/química , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/tratamento farmacológico
14.
Eur J Med Chem ; 46(4): 1103-16, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21316127

RESUMO

Pilicides are a class of compounds that attenuate virulence in Gram negative bacteria by blocking the chaperone/usher pathway in Escherichia coli. It has also been shown that compounds derived from the peptidomimetic scaffold that the pilicides are based on can prevent both Aß aggregation and curli formation. To facilitate optimizations towards the different targets, a new synthetic platform has been developed that enables fast and simple introduction of various substituents in position C-7 on the peptidomimetic scaffold. Importantly, this strategy also enables introduction of previously unattainable heteroatoms in this position. Pivotal to the synthetic strategy is the synthesis of a C-7 bromomethyl substituted derivative of the ring-fused dihydrothiazolo 2-pyridone pilicide scaffold. From this versatile and reactive intermediate various heteroatom-linked substituents could be introduced on the scaffold including amines, ethers, amides and sulfonamides. In addition, carbon-carbon bonds could be introduced to the sp(3)-hybridized bromomethyl substituted scaffold by Suzuki-Miyaura cross couplings. Evaluation of the 24 C-7 substituted compounds in whole-bacterial assays provided important structure-activity data and resulted in the identification of a number of new pilicides with activity as good or better than those developed previously.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Álcoois/química , Aminas/química , Antibacterianos/síntese química , Azidas/química , Carbono/química , Oxirredução , Virulência/efeitos dos fármacos
15.
Mol Cell Biol ; 30(14): 3672-84, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20457811

RESUMO

Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/imunologia , Imunidade Inata/genética , Fatores do Domínio POU/metabolismo , Animais , Animais Geneticamente Modificados , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sequência de Bases , Primers do DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Elementos Facilitadores Genéticos , Feminino , Genes de Insetos , Genitália Masculina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Masculino , Modelos Biológicos , Mutação , Fatores do Domínio POU/genética , Fatores do Domínio POU/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Ativação Transcricional
16.
Trends Genet ; 23(7): 342-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17532525

RESUMO

The innate immune defense system involves the activity of endogenous antimicrobial peptides (AMPs), which inhibit the growth of most microbes. In insects, genes encoding AMPs are expressed at basal levels in barrier epithelia and are upregulated systemically in response to infection. To achieve this differentiated immune defense, Drosophila immune gene promoters combine tissue-specific enhancers and signal-dependent response elements. Transcription factors of the Hox, POU and GATA families control tissue-specific expression of AMP genes, either constitutively or in combination with NF-kappaB/Rel family factors that function as 'on-off switches' during infection. Here, we review these different modes of AMP expression and provide a model for transcriptional regulation of AMP genes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Genes de Insetos , Sistema Imunitário/metabolismo , Animais , Dimerização , Feminino , Infecções/metabolismo , Proteínas de Insetos/metabolismo , Insetos , Masculino , Modelos Biológicos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/metabolismo
17.
Insect Biochem Mol Biol ; 37(3): 202-12, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17296495

RESUMO

Innate immunity is a universal and ancient defense system in metazoans against microorganisms. Antimicrobial peptides, which are synthesized both in insects and humans, constitute an endogenous, gene-encoded defense arsenal. In Drosophila, antimicrobial peptides, such as the potent cecropins, are expressed both constitutively in barrier epithelia, as well as systemically in response to infection. Rel/NF-kappaB proteins are well-known regulators of antimicrobial peptide genes, but very few Rel/NF-kappaB co-factors and/or tissue-specific regulators have been identified. We performed a double interaction screen in yeast to isolate Drosophila cDNAs coding for direct regulators, as well as Dif co-regulators, of the CecropinA1 gene. Three classes of positive cDNA clones corresponding to 15 Drosophila genes were isolated and further characterized. One of the Dif-independent cDNAs encoded the Rel/NF-kappaB protein Relish; a well-known activator of antimicrobial peptide genes in Drosophila, demonstrating the applicability of this type of screen for isolating regulators of immune defense. Most interestingly, three transcription factors belonging to the POU domain class of homeodomain proteins, Pdm1, Pdm2 and Dfr/Vvl were isolated as Dif-interacting partners, and subsequently verified as regulators of CecA1 expression in Drosophila cells. The importance of POU proteins in development and differentiation in Drosophila and mammals is well documented, but their role in regulation of Drosophila immune defense genes is a new and essential finding.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/imunologia , Genes de Insetos , Proteínas de Homeodomínio/metabolismo , Fatores do Domínio POU/metabolismo , Fatores de Transcrição/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , DNA Complementar , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido
18.
EMBO J ; 25(13): 3068-77, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16763552

RESUMO

Jun N-terminal kinase (JNK) signaling is a highly conserved pathway that controls both cytoskeletal remodeling and transcriptional regulation in response to a wide variety of signals. Despite the importance of JNK in the mammalian immune response, and various suggestions of its importance in Drosophila immunity, the actual contribution of JNK signaling in the Drosophila immune response has been unclear. Drosophila TAK1 has been implicated in the NF-kappaB/Relish-mediated activation of antimicrobial peptide genes. However, we demonstrate that Relish activation is intact in dTAK1 mutant animals, and that the immune response in these mutant animals was rescued by overexpression of a downstream JNKK. The expression of a JNK inhibitor and induction of JNK loss-of-function clones in immune responsive tissue revealed a general requirement for JNK signaling in the expression of antimicrobial peptides. Our data indicate that dTAK1 is not required for Relish activation, but instead is required in JNK signaling for antimicrobial peptide gene expression.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/imunologia , MAP Quinase Quinase 4/fisiologia , NF-kappa B/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Ativação Enzimática , Imunidade Inata , Larva/imunologia , Larva/microbiologia , Mutação , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia
19.
Mol Cell Biol ; 23(22): 8272-81, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14585984

RESUMO

Innate immune reactions are crucial processes of metazoans to protect the organism against overgrowth of faster replicating microorganisms. Drosophila melanogaster is a precious model for genetic and molecular studies of the innate immune system. In response to infection, the concerted action of a battery of antimicrobial peptides ensures efficient killing of the microbes. The induced gene expression relies on translocation of the Drosophila Rel transcription factors Relish, Dif, and Dorsal to the nucleus where they bind to kappaB-like motifs in the promoters of the inducible genes. We have identified another putative promoter element, called region 1 (R1), in a number of antimicrobial peptide genes. Site-directed mutagenesis of the R1 site diminished Cecropin A1 (CecA1) expression in transgenic Drosophila larvae and flies. Infection of flies induced a nuclear R1-binding activity that was unrelated to the kappaB-binding activity in the same extracts. Although the R1 motif was required for Rel protein-mediated CecA1 expression in cotransfection experiments, our data argue against it being a direct target for the Drosophila Rel proteins. We propose that the R1 and kappaB motifs are targets for distinct regulatory complexes that act in concert to promote high levels of antimicrobial peptide gene expression in response to infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Imunidade Inata/genética , Regiões Promotoras Genéticas , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , Drosophila melanogaster/crescimento & desenvolvimento , Expressão Gênica , Genes de Insetos , Infecções/genética , Infecções/imunologia , Óperon Lac , Mutagênese Sítio-Dirigida
20.
Chem Biol ; 10(3): 241-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12670538

RESUMO

Agents that target bacterial virulence without detrimental effect on bacterial growth are useful chemical probes for studies of virulence and potential candidates for drug development. Several gram-negative pathogens employ type III secretion to evade the innate immune response of the host. Screening of a chemical library with a luciferase reporter gene assay in viable Yersinia pseudotuberculosis furnished several compounds that inhibit the reporter gene signal expressed from the yopE promoter and effector protein secretion at concentrations with no or modest effect on bacterial growth. The selectivity patterns observed for inhibition of various reporter gene strains indicate that the compounds target the type III secretion machinery at different levels. Identification of this set of inhibitors illustrates the approach of utilizing cell-based assays to identify compounds that affect complex bacterial virulence systems.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/biossíntese , Yersinia pseudotuberculosis/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/genética , Bioensaio , Western Blotting , Sistemas de Liberação de Medicamentos , Genes Reporter , Regiões Promotoras Genéticas , Virulência , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...