Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(4): 1147-1158, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084184

RESUMO

Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl bromide moieties are highly labile on HPHT NDs and are metastable as previously found using density functional theory. The strong leaving group properties of the alkyl bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. This robust pathway to activate a chemically inert ND surface broadens the modalities for surface termination, and the unique surface properties of brominated and aminated NDs are impactful to researchers for chemically tuning diamond for quantum sensing or biolabeling applications.

2.
ACS Appl Mater Interfaces ; 13(33): 39195-39204, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387480

RESUMO

With the rapid increase in the use of lithium-ion batteries (LIBs), the development of safe LIBs has become an important social issue. Replacing flammable organic liquid electrolytes in current LIBs with water can be an alternative route to resolve this safety concern. The water-in-salt (WIS) electrolytes received great attention as next-generation electrolytes due to their large electrochemical stability window. However, their high cathodic limit remains as a challenge, impeding the use of low-potential anodes. Here, we report the first biodirected synthesis of carbonaceous layers on anodes to use them as interlayers that prevent a direct contact of water molecules to anode particles. High-aspect ratio microbes are utilized as precursors of carbonaceous layers on TiO2 nanoparticles (m-TiO2) to enhance the conductivity and to reduce the electrolysis of WIS electrolytes. We selected the cylindrical shape of microbes that offers geometric diversity, providing us a toolkit to investigate the effect of microbe length in forming the network in binary composites and their impacts on the battery performance with WIS electrolytes. Using microbes with varying aspect ratios, the optimal microbe size to maximize the battery performance is determined. The effects of storage time on microbe size are also studied. Compared to uncoated TiO2 anodes, m-TiO2 exhibited 49% higher capacity at the 40th cycle and enhanced the cycle life close to anodes made with a conventional carbon precursor while using an 11% less amount of carbon. We performed density functional theory calculations to unravel the underlying mechanism of the performance improvement using microbe-derived carbon layers. Computational results show that high amounts of pyridinic nitrogen present in the peptide bonds in microbes are expected to slow down the water diffusion. Our findings provide key insights into the design of an interlayer for WIS anodes and open an avenue to fabricate energy storage materials using biomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...