Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4330, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383752

RESUMO

The therapeutic use of mesenchymal stem cells (MSCs) becomes more and more important due to their potential for cell replacement procedures as well as due to their immunomodulatory properties. However, protocols for MSCs differentiation can be lengthy and may result in incomplete or asynchronous differentiation. To ensure homogeneous populations for therapeutic purposes, it is crucial to develop protocols for separation of the different cell types after differentiation. In this article we show that, when MSCs start to differentiate towards adipogenic or osteogenic progenies, their dielectrophoretic behavior changes. The values of cell electric parameters which can be obtained by dielectrophoretic measurements (membrane permittivity, conductivity, and cytoplasm conductivity) change before the morphological features of differentiation become microscopically visible. We further demonstrate, by simulation, that these electric modifications make possible to separate cells in their early stages of differentiation by using the dielectrophoretic separation technique. A label free method which allows obtaining cultures of homogenously differentiated cells is thus offered.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Diferenciação Celular , Osteogênese , Células Cultivadas
2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958601

RESUMO

In recent years, the application of pulsed electric fields with very short durations (nanoseconds) and extremely high amplitudes (MV/m) has been investigated for novel medical purposes. Various electric protocols have been explored for different objectives, including the utilization of fractionated pulse doses to enhance cell electrosensitization to the uptake of different markers or an increase in apoptosis. This study focused on the use of fluorescence imaging to examine molecular calcium fluxes induced by different fractionated protocols of short electric pulses in neuroblastoma (SH-SY5Y) and mesenchymal stem cells (HaMSCs) that were electroporated using nanosecond pulsed electric fields. In our experimental setup, we did not observe cell electrosensitization in terms of an increase in calcium flux following the administration of fractionated doses of nanosecond pulsed electric fields with respect to the non-fractionated dose. However, we observed the targeted activation of calcium-dependent genes (c-FOS, c-JUN, EGR1, NURR-1, ß3-TUBULIN) based on the duration of calcium flux, independent of the instantaneous levels achieved but solely dependent on the final plateau reached. This level of control may have potential applications in various medical and biological treatments that rely on calcium and the delivery of nanosecond pulsed electric fields.


Assuntos
Cálcio , Neuroblastoma , Humanos , Neuroblastoma/terapia , Apoptose , Genes fos , Transdução de Sinais , Cálcio da Dieta
3.
Front Genet ; 11: 627007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633774

RESUMO

Ubiquitin-specific peptidase 18 (USP18) acts as gatekeeper of type I interferon (IFN) responses by binding to the IFN receptor subunit IFNAR2 and preventing activation of the downstream JAK/STAT pathway. In any given cell type, the level of USP18 is a key determinant of the output of IFN-stimulated transcripts. How the baseline level of USP18 is finely tuned in different cell types remains ill defined. Here, we identified microRNAs (miRNAs) that efficiently target USP18 through binding to the 3'untranslated region (3'UTR). Among these, three miRNAs are particularly enriched in circulating monocytes which exhibit low baseline USP18. Intriguingly, the USP18 3'UTR sequence is duplicated in human and chimpanzee genomes. In humans, four USP18 3'UTR copies were previously found to be embedded in long intergenic non-coding (linc) RNA genes residing in chr22q11.21 and known as FAM247A-D. Here, we further characterized their sequence and measured their expression profile in human tissues. Importantly, we describe an additional lincRNA bearing USP18 3'UTR (here linc-UR-B1) that is expressed only in testis. RNA-seq data analyses from testicular cell subsets revealed a positive correlation between linc-UR-B1 and USP18 expression in spermatocytes and spermatids. Overall, our findings uncover a set of miRNAs and lincRNAs, which may be part of a network evolved to fine-tune baseline USP18, particularly in cell types where IFN responsiveness needs to be tightly controlled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...