Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(13): 3587-3590, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390187

RESUMO

We report the observation of the parametric gain band distortion in the nonlinear (depleted) regime of modulation instability in dispersion oscillating fibers. We show that the maximum gain is shifted even outside the boundaries of the linear parametric gain band. Experimental observations are confirmed by numerical simulations.

2.
Opt Lett ; 46(19): 5019-5022, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598259

RESUMO

We report an experimental study on the backward-pumped Raman amplification of short pulses into a 20.3 km long optical fiber. We demonstrate that the gain and the pump saturation depend on the pulse duration. We also reveal that for short enough pulses, the amplification process remains linear, and very high peak powers, even larger than the Raman pump, are achievable. Numerical simulations reproduce the experimental results with excellent agreement.

3.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790009

RESUMO

The classical theory of modulation instability (MI) attributed to Bespalov-Talanov in optics and Benjamin-Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.

4.
Opt Lett ; 45(13): 3757-3760, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630947

RESUMO

We report the first, to the best of our knowledge, experimental observation of doubly periodic first-order solutions of the nonlinear Schrödinger equation in optical fibers. We confirm, experimentally, the existence of A-type and B-type solutions. This is done by using the initial conditions that consist of a strong pump and two weak sidebands. The evolution of power and phase of the main spectral components is recorded using heterodyne time-domain reflectometry. Another important part of our experiment is active loss compensation. We reach a good agreement between theory and experiment.

5.
Opt Express ; 28(12): 17773-17781, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679980

RESUMO

We report the experimental observation of more than four Fermi-Pasta-Ulam-Tsingou recurrences in an optical fiber thanks to an ultra-low loss optical fiber and to an active loss compensation system. We observe both regular (in-phase) and symmetry-broken (phase-shifted) recurrences, triggered by the input phase. Experimental results are confirmed by numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...