Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(5): 6782-6814, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165540

RESUMO

This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.


Assuntos
Peróxido de Hidrogênio , Purificação da Água , Antagonistas de Receptores de Angiotensina , Purificação da Água/métodos , Cloro , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Desinfecção/métodos , Raios Ultravioleta
2.
Environ Sci Pollut Res Int ; 31(4): 5596-5609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38127234

RESUMO

Bacteria from resource islands can adapt to different extreme conditions in semi-arid regions. We aimed to determine the potential resistance and tolerance to heavy metals from the bacterial community under the canopy of three resource islands in a semi-arid zone of the Colombian Caribbean. Total DNA was extracted from soil and through a metagenomics approach, we identified genes related to heavy metal tolerance and resistance under the influence of drought and humidity conditions, as well as the presence or absence of vegetation. We characterized the genomes of bacterial isolates cultivated in the presence of four heavy metals. The abundances of genes related to heavy metal resistance and tolerance were favored by soil moisture and the presence of vegetation. We observed a high abundance of resistance genes (60.4%) for Cu, Zn, and Ni, while 39.6% represented tolerance. These genes positively correlated with clay and silt content, and negatively correlated with sand content. Resistance and tolerance were associated with detoxification mechanisms involving oxidoreductase enzymes, metalloproteases, and hydrolases, as well as transmembrane proteins involved in metal transport such as efflux pumps and ion transmembrane transporters. The Bacillus velezensis C3-3 and Cytobacillus gottheilii T106 isolates showed resistance to 5 mM of Cd, Co, Mn, and Ni through detoxification genes associated with ABC pumps, metal transport proteins, ion antiporter proteins, and import systems, among others. Overall, these findings highlight the potential of bacteria from resource islands in bioremediation processes of soils contaminated with heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , Colômbia , Metais Pesados/análise , Bactérias/genética , Bactérias/metabolismo , Solo , Metagenômica , Região do Caribe , Poluentes do Solo/análise
3.
Antonie Van Leeuwenhoek ; 116(11): 1171-1184, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37682363

RESUMO

Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.


Assuntos
Ecossistema , Salinidade , Solo , Metagenoma , Região do Caribe
4.
Mar Pollut Bull ; 184: 114204, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219973

RESUMO

Mangroves are often exposed to heavy metals that accumulate in the food chain, generate toxicity to mangrove plants and affect microbial diversity. This study determined the abundance of genes associated with resistance and tolerance to heavy metals in the rhizosphere microbiome of Avicennia germinans from a semi-arid mangrove of La Guajira-Colombia by metagenomics and genomics approach. Twenty-eight genes associated with tolerance and 49 genes related to resistance to heavy metals were detected. Genes associated with tolerance and resistance to Cu, especially cusA and copA, were the most abundant. The highest number of genes for tolerance and resistance were for Zn and Co, respectively. The isolate Vibrio fluvialis showed the ability to tolerate Cu, Ni, Zn, and Cd. This work used a complementary approach of metagenomics and genomics to characterize the potential of mangrove microorganisms to tolerate and resist heavy metals and the influence of salinity on their abundance.


Assuntos
Avicennia , Metais Pesados , Microbiota , Avicennia/genética , Áreas Alagadas , Rizosfera , Metagenômica , Cádmio , Metais Pesados/toxicidade
5.
Exp Parasitol ; 241: 108359, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998723

RESUMO

To contribute to the development of new fumigant nematicides for the control of the plant-parasitic nematode Meloidogyne incognita, this study started with 31 volatile organic compounds reported as toxic to nematodes. At 500 µg/mL, α-ionone, (S)-carvone, (R)-carvone, 2-methylpropyl acetate, undecan-2-one, decan-2-one, and dodecan-2-one caused mortalities to M. incognita second-stage juveniles (J2) that were similar to those obtained with the commercial nematicides carbofuran (170 µg/mL) and fluensulfone (42.2 µg/mL). (R)-carvone, with a lethal concentration to 50% J2 (LC50) equal to 524 µg/mL, was selected for subsequent studies. When J2 were exposed to the (R)-carvone solution, the infectivity and reproduction on tomato were reduced. In the M. incognita egg hatching assay, (R)-carvone behaved like a true ovicide. When employed as a fumigant, (R)-carvone (3.9 g/L) was as efficient as the soil fumigant dazomet (0.245 g/L) in eliminating eggs of the nematode in a substrate to be used for tomato planting. According to in silico studies employing pharmacophoric searches and molecular docking, acetylcholinesterases are the target of (R)-carvone in the nematode.


Assuntos
Solanum lycopersicum , Tylenchoidea , Acetilcolinesterase , Animais , Antinematódeos/química , Antinematódeos/farmacologia , Monoterpenos Cicloexânicos , Solanum lycopersicum/parasitologia , Simulação de Acoplamento Molecular , Solo
6.
J Agric Food Chem ; 70(22): 6624-6633, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622462

RESUMO

(E)-Cinnamaldehyde is very active against Meloidogyne incognita but has low persistence in soil. To circumvent this problem, esters of cinnamic acid were evaluated as a substitute for (E)-cinnamaldehyde. The best results under assays with M. incognita second-stage juveniles (J2) were obtained for the methyl esters of (E)-p-fluoro- (13), (E)-p-chloro- (14), and (E)-p-bromocinnamic acid (15), which showed lethal concentrations to 50% (LC50) J2 of 168, 95, and 216 µg/mL, respectively. Under the same conditions, the LC50 values for the nematicides carbofuran and fluensulfone were 160 and 34 µg/mL, respectively. Substances 13-15 were also active against nematode eggs, which account for most of the M. incognita population in the field. According to an in silico study, substances 13-15 can act against the nematode through inhibition of histone deacetylase. Therefore, esters 13-15 and histone deacetylase are potentially useful for the rational design of new nematicides for the control of M. incognita.


Assuntos
Tylenchoidea , Animais , Antinematódeos/farmacologia , Cinamatos , Ésteres/farmacologia , Histona Desacetilases
7.
Mar Pollut Bull ; 171: 112740, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34304060

RESUMO

Salinity and wastewater pollution in mangrove ecosystems can affect microorganisms and the abundance of genes involved in response to these stressors. This research aimed to identify genes associated with resistance and biosynthesis of antimicrobial compounds in mangrove soils subjected to contrasting salinities and wastewater pollution. Samples of rhizospheric soil were taken from a mangrove at the mouth of the Ranchería River in La Guajira, Colombia. A functional analysis was performed using Illumina HiSeq 2500 sequencing data obtained from total DNA extracted. Increased salt concentration influenced metabolic pathways and differential abundance of genes associated with the synthesis of antimicrobial compounds (e.g., rfbB/rffG, INO1/ISYNA1, rfbA/rffH, sat/met3, asd). Also, among 33 genes involved in intrinsic antibiotic resistance, 16 were significantly influenced by salinity (e.g., cusR/copR/silR, vgb, tolC). We concluded that salt stress tolerance and adaptive mechanisms could favor the biosynthesis of antimicrobial compounds in mangroves contaminated by sewage.


Assuntos
Salinidade , Áreas Alagadas , Antibacterianos , Ecossistema , Metagenômica
8.
Environ Pollut ; 255(Pt 2): 113293, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563776

RESUMO

Despite their ecological and socioeconomic importance, mangroves are among the most threatened tropical environments in the world. In the past two decades, the world's mangrove degradation and loss were estimated to lie between an 35% and >80%. However, appropriate bioindicators for assessing the impact of external factors, and for differentiating polluted from unpolluted areas are still scarce. Here, we determine the physicochemical profiles of the soils of two mangroves, one exposed to and one not exposed to anthropogenic factors. By metagenomic analysis based on 16S rRNA, we generated the bacterial diversity profiles of the soils and estimated their functional profiles. Our results showed that the two examined mangrove forests differed significantly in the physicochemical properties of the soils, especially regarding organic carbon, phosphorus and metal content, as well as in their microbial communities, which was likely caused by anthropogenic pollution. The physicochemical differences between the soils explained 76% of the differential bacterial composition, and 64% depended solely on gradients of phosphorus, metal ions and potassium. We found two genera JL-ETNP-Z39 and TA06 exclusively in polluted and non-polluted mangroves, respectively. Additionally, the polluted mangrove was enriched in Gemmatimonadetes, Cyanobacteria, Chloroflexi, Firmicutes, Acidobacteria, and Nitrospirae. A total of 77 genera were affected by anthropic contamination, of which we propose 33 as bioindicators; 26 enriched, and 7 depleted upon pollution.


Assuntos
Biomarcadores Ambientais/genética , Poluição Ambiental/efeitos adversos , Metagenoma , Microbiota/genética , Microbiologia do Solo/normas , Áreas Alagadas , Colômbia , Metagenômica , RNA Ribossômico 16S/genética , Solo/química
9.
Environ Pollut ; 249: 750-757, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30933772

RESUMO

Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.


Assuntos
Rizosfera , Microbiologia do Solo , Solo/química , Áreas Alagadas , Xenobióticos/metabolismo , Avicennia/microbiologia , Biodegradação Ambiental , Colômbia , Metagenômica , Salinidade
10.
Acta biol. colomb ; 11(1): 83-97, ene. 2006. mapas, tab, graf
Artigo em Espanhol | LILACS | ID: lil-469092

RESUMO

Con el fin de probar la efectividad de dos inoculantes microbianos (aislados a partir de raicillas de mangle rojo y negro) en el crecimiento y establecimiento de plántulas de mangle y de patilla, se realizaron cuatro pruebas en campo en San Andrés Isla, Colombia. Se aplicaron dichos inoculantes en: propágulos de Avicennia germinans colectados en un área de manglar y sembrados en macetas sobre sustrato solarizado (con el fin de disminuir la carga microbiana), plántulas de A. germinans y Rhizophora mangle colectadas en cercanía de árboles semilleros, plántulas de A. germinans y R. mangle sembradas y mantenidas en vivero y en semillas de patilla (Citrullus vulgaris) sembradas en un cultivo libre de fertilizantes químicos. Las variables tomadas como indicativo de crecimiento y desarrollo vegetal fueron: número de nodos, número de hojas y longitud del tallo. Los inoculantes (microorganismos solubilizadores de fosfatos -MSF- y bacterias fijadoras de nitrógeno -BFN-) se aplicaron en el material vegetal mencionado, efectuando mediciones durante tres meses. Los resultados muestran un efecto positivo de estimulación de crecimiento medido en longitud del tallo en las plantas tratadas con los inoculantes, específicamente en patilla y propágulos de A. germinans mantenidos en vivero.


Assuntos
Áreas Alagadas , Plantas/crescimento & desenvolvimento , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...