Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 753, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951790

RESUMO

BACKGROUND: Gutta-percha (GP) combined with an endodontic sealer is still the core material most widely used for tridimensional obturation. The sealer acts as a bonding agent between the GP and the root dentinal walls. However, one of the main drawbacks of GP core material is the lack of adhesiveness to the sealer. ZnO thin films have many remarkable features due to their considerable bond strength, good optical quality, and excellent piezoelectric, antibacterial, and antifungal properties, offering many potential applications in various fields. This study aimed to explore the influence of GP surface's functionalization with a nanostructured ZnO thin film on its adhesiveness to endodontic sealers. METHODS: Conventional GP samples were divided randomly into three groups: (a) Untreated GP (control); (b) GP treated with argon plasma (PT); (c) Functionalized GP (PT followed by ZnO thin film deposition). GP's surface functionalization encompassed a multi-step process. First, a low-pressure argon PT was applied to modify the GP surface, followed by a ZnO thin film deposition via magnetron sputtering. The surface morphology was assessed using SEM and water contact angle analysis. Further comprehensive testing included tensile bond strength assessment evaluating Endoresin and AH Plus Bioceramic sealers' adhesion to GP. ANOVA procedures were used for data statistical analysis. RESULTS: The ZnO thin film reproduced the underlying surface topography produced by PT. ZnO thin film deposition decreased the water contact angle compared to the control (p < 0.001). Endoresin showed a statistically higher mean bond strength value than AH Plus Bioceramic (p < 0.001). There was a statistically significant difference between the control and the ZnO-functionalized GP (p = 0.006), with the latter presenting the highest mean bond strength value. CONCLUSIONS: The deposition of a nanostructured ZnO thin film on GP surface induced a shift towards hydrophilicity and an increased GP's adhesion to Endoresin and AH Bioceramic sealers.


Assuntos
Colagem Dentária , Guta-Percha , Nanoestruturas , Materiais Restauradores do Canal Radicular , Propriedades de Superfície , Óxido de Zinco , Óxido de Zinco/química , Materiais Restauradores do Canal Radicular/química , Nanoestruturas/química , Guta-Percha/química , Colagem Dentária/métodos , Humanos , Teste de Materiais , Adesividade , Microscopia Eletrônica de Varredura , Resistência à Tração
2.
Polymers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794609

RESUMO

Over the last decade, researchers have developed a variety of new analytical and clinical diagnostic devices. These devices are predominantly based on microfluidic technologies, where biological samples can be processed and manipulated for the collection and detection of important biomolecules. Polydimethylsiloxane (PDMS) is the most commonly used material in the fabrication of these microfluidic devices. However, it has a hydrophobic nature (contact angle with water of 110°), leading to poor wetting behavior and issues related to the mixing of fluids, difficulties in obtaining uniform coatings, and reduced efficiency in processes such as plasma separation and molecule detection (protein adsorption). This work aimed to consider the fabrication aspects of PDMS microfluidic devices for biological applications, such as surface modification methods. Therefore, we studied and characterized two methods for obtaining hydrophilic PDMS surfaces: surface modification by bulk mixture and the surface immersion method. To modify the PDMS surface properties, three different surfactants were used in both methods (Pluronic® F127, polyethylene glycol (PEG), and polyethylene oxide (PEO)) at different percentages. Water contact angle (WCA) measurements were performed to evaluate the surface wettability. Additionally, capillary flow studies were performed with microchannel molds, which were produced using stereolithography combined with PDMS double casting and replica molding procedures. A PDMS microfluidic device for blood plasma separation was also fabricated by soft lithography with PDMS modified by PEO surfactant at 2.5% (v/v), which proved to be the best method for making the PDMS hydrophilic, as the WCA was lower than 50° for several days without compromising the PDMS's optical properties. Thus, this study indicates that PDMS surface modification shows great potential for enhancing blood plasma separation efficiency in microfluidic devices, as it facilitates fluid flow, reduces cell aggregations and the trapping of air bubbles, and achieves higher levels of sample purity.

3.
Biosensors (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667152

RESUMO

This work reports on the surface functionalization of a nanomaterial supporting localized surface plasmon resonances (LSPRs) with (synthetic) thiolated oligonucleotide-based biorecognition elements, envisaging the development of selective LSPR-based DNA biosensors. The LSPR thin-film transducers are composed of noble metal nanoparticles (NPs) embedded in a TiO2 dielectric matrix, produced cost-effectively and sustainably by magnetron sputtering. The study focused on the immobilization kinetics of thiolated oligonucleotide probes as biorecognition elements, followed by the evaluation of hybridization events with the target probe. The interaction between the thiolated oligonucleotide probe and the transducer's surface was assessed by monitoring the LSPR signal with successive additions of probe solution through a microfluidic device. The device was specifically designed and fabricated for this work and adapted to a high-resolution LSPR spectroscopy system with portable characteristics. Benefiting from the synergetic characteristics of Ag and Au in the form of bimetallic nanoparticles, the Au-Ag/TiO2 thin film proved to be more sensitive to thiolated oligonucleotide binding events. Despite the successful surface functionalization with the biorecognition element, the detection of complementary oligonucleotides revealed electrostatic repulsion and steric hindrance, which hindered hybridization with the target oligonucleotide. This study points to an effect that is still poorly described in the literature and affects the design of LSPR biosensors based on nanoplasmonic thin films.


Assuntos
Técnicas Biossensoriais , Ouro , Nanopartículas Metálicas , Oligonucleotídeos , Prata , Ressonância de Plasmônio de Superfície , Titânio , Titânio/química , Ouro/química , Prata/química , Nanopartículas Metálicas/química , Oligonucleotídeos/química , Compostos de Sulfidrila/química , DNA , Hibridização de Ácido Nucleico
4.
Sensors (Basel) ; 23(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067991

RESUMO

The extinction efficiency of noble metal nanoparticles (NPs), namely gold (Au) and silver (Ag), are dependent on their size and surrounding dielectric. Exploiting the Localized Surface Plasmon Resonance (LSPR) phenomenon, the composition and structure of the NPs might be tailored to achieve a configuration that optimizes their response (sensitivity) to environmental changes. This can be done by preparing a bimetallic system, benefiting from the chemical stability of Au NPs and the higher scattering efficiency of Ag NPs. To enhance the LSPR sensing robustness, incorporating solid supports in the form of nanocomposite thin films is a suitable alternative. In this context, the NPs composed of gold (Au), silver (Ag), and their mixture in bimetallic Au-Ag NPs, were grown in a titanium dioxide (TiO2) matrix using reactive DC magnetron sputtering. Thermal treatment at different temperatures (up to 700 °C) tuned the LSPR response of the films and, consequently, their sensitivity. Notably, the bimetallic film with Au/Ag atomic ratio 1 exhibited the highest refractive index sensitivity (RIS), with a value of 181 nm/RIU, almost one order of magnitude higher than monometallic Au-TiO2. The nanostructural analysis revealed a wide NP size distribution of bimetallic NPs with an average size of 31 nm, covering about 20% of the overall surface area. These findings underscore the significant potential of bimetallic film systems, namely AuAg-TiO2, in LSPR sensing enhancement.

5.
Materials (Basel) ; 16(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38068099

RESUMO

This work reports on the development of nanoplasmonic thin films consisting of Au, Ag, or Au-Ag nanoparticles dispersed in a TiO2 matrix and the optimization of the deposition parameters to tune their optical response. The thin films were produced by reactive DC magnetron sputtering of a Ti target with Au and/or Ag pellets placed on the erosion zone. The thicknesses (50 and 100 nm) of the films, the current density (75 and 100 A/m2) applied to the target (titanium), and the number of pellets placed on its surface were the deposition conditions that were used to tailor the optical (LSPR) response. The total noble metal content varied between 13 and 28 at.% for Au/TiO2 films, between 22 and 30 at.% for Ag/TiO2 films, and 8 to 29 at% for the Au-Ag/TiO2 systems with 1:1, 1:1.5, and 1:2 Au:Ag atomic ratios. After thermal annealing at 400 and 600 °C, LSPR bands were found for all films concerning the Au-TiO2 and Au-Ag/TiO2, while for Ag/TiO2, only for thin films with 28 and 30 at.% of Ag concentration. Refractive index sensitivity (RIS) was evaluated for Au and Au-Ag/TiO2 thin films. It was found that for bimetallic nanoparticles, the sensitivity can increase up to five times when compared to a monometallic nanoplasmonic system. Using Au-Ag/TiO2 thin films can decrease the cost of fabrication of LSPR transducers while improving their sensitivity.

6.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837150

RESUMO

This study aims to evaluate the lifespan of Ti-Ag dry electrodes prepared using flexible polytetrafluoroethylene (PTFE) substrates. Following previous studies, the electrodes were designed to be integrated into wearables for remote electromyography (EMG) monitoring and electrical stimulation (FES) therapy. Four types of Ti-Ag electrodes were prepared by DC magnetron sputtering, using a pure-Ti target doped with a growing number of Ag pellets. After extensive characterization of their chemical composition and (micro)structural evolution, the Ti-Ag electrodes were immersed in an artificial sweat solution (standard ISO-3160-2) at 37 °C with constant stirring. Results revealed that all the Ti-Ag electrodes maintained their integrity and functionality for 24 h. Although there was a notable increase in electrical resistivity beyond this timeframe, the acquisition and transmission of (bio)signals remained viable for electrodes with Ag/Ti ratios below 0.23. However, electrodes with higher Ag content (Ag/Ti = 0.31) became insulators after 7 days of immersion due to excessive Ag release into the sweat solution. This study concludes that higher Ag/Ti atomic ratios result in heightened corrosion processes on the electrode's surface, consequently diminishing their lifespan despite the advantages of incorporating Ag into their composition. This research highlights the critical importance of evaluating electrode longevity, especially in remote biomedical applications like smart wearables, where electrode performance over time is crucial for reliable and sustained monitoring and stimulation.


Assuntos
Longevidade , Titânio , Titânio/química , Eletrodos
8.
Sensors (Basel) ; 23(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765838

RESUMO

Thermoelectric phenomena, such as the Anomalous Nernst and Longitudinal Spin Seebeck Effects, are promising for sensor applications in the area of renewable energy. In the case of flexible electronic materials, the request is even larger because they can be integrated into devices having complex shape surfaces. Here, we reveal that Pt promotes an enhancement of the thermoelectric response in Co-rich ribbon/Pt heterostructures due to the spin-to-charge conversion. Moreover, we demonstrated that the employment of the thermopiles configuration in this system increases the induced thermoelectric current, a fact related to the considerable decrease in the electric resistance of the system. By comparing present findings with the literature, we were able to design a flexible thermopile based on LSSE without the lithography process. Additionally, the thermoelectric voltage found in the studied flexible heterostructures is comparable to the ones verified for rigid systems.

9.
ACS Appl Mater Interfaces ; 15(33): 39872-39882, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37527439

RESUMO

This study explores the potential of integrating thin-film technology in the design of new and effective electromagnetic interference (EMI) shielding and conductive materials for textiles and wearables. This application is of particular interest to the textile industry as it can bring new functionalities to wearables and protect humans from prolonged exposure to EM radiation. Three different thin films of pure Ti, pure Cu, and Ti-doped with Cu prepared by magnetron sputtering were used to functionalize textile knits based on cotton (code 39F) and lyocell fibers (62I). The films displayed different crystalline structures, morphologies, and topographies, which depended on their chemical compositions. The shielding effectiveness (SE) of the functionalized knits against EMI was evaluated in the frequency range of 2-8 GHz. Also, the electrical response under stress was assessed since the electrical conductivity is closely related to the EMI shielding effectiveness. The results demonstrate the feasibility of using a thin conductive layer based on Cu or Ti-Cu to improve the shield textiles with great adhesion and low thickness, providing an interesting path to improve shielding efficiency for EMI without modifying the flexibility of the textiles.

10.
Sci Rep ; 13(1): 12303, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516768

RESUMO

Gutta-percha's lack of adhesion has been presented as a drawback to avoid gaps at sealer/gutta-percha interface. Plasma treatments have been scarcely assessed on gutta-percha surfaces as a method of enhancing adhesiveness. This study aimed to evaluate the effect of low-pressure Argon and Oxygen plasma atmospheres on conventional and bioceramic gutta-percha standardized smooth discs, assessing their roughness, surface free energy, chemical structure, and sealer wettability. A Low-Pressure Plasma Cleaner by Diener Electronic (Zepto Model) was used. Different gases (Argon or Oxygen), powers (25 W, or 50 W), and exposure times (30 s, 60 s, 120 s, or 180 s) were tested in control and experimental groups. Kruskal-Wallis and Student's t-test were used in data analysis. Statistically significant differences were detected when P < 0.05. Both gases showed different behaviors according to the parameters selected. Even though chemical changes were detected, the basic molecular structure was maintained. Argon or Oxygen plasma treatments favoured the wetting of conventional and bioceramic gutta-perchas by Endoresin and AH Plus Bioceramic sealers (P < 0.001). Overall, the functionalization of gutta-percha surfaces with Argon or Oxygen plasma treatments can increase roughness, surface free energy and wettability, which might improve its adhesive properties when compared to non-treated gutta-percha.


Assuntos
Gases , Guta-Percha , Humanos , Adesividade , Argônio , Oxigênio
11.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36772460

RESUMO

Fe3Co67Cr3Si15B12 ribbons with a high degree of flexibility and excellent corrosion stability were produced by rapid quenching technique. Their structural, magnetic, and thermomagnetic (Anomalous Nernst Effect) properties were studied both in an as-quenched (NR) state and after stress annealing during 1 h at the temperature of 350 °C and a specific load of 230 MPa (AR). X-ray diffraction was used to verify the structural characteristics of our ribbons. Static magnetic properties were explored by inductive technique and vibrating sample magnetometry. The thermomagnetic curves investigated through the Anomalous Nernst Effect are consistent with the obtained magnetization results, presenting a linear response in the thermomagnetic signal, an interesting feature for sensor applications. Additionally, Anomalous Nernst Effect coefficient SANE values of 2.66µV/K and 1.93µV/K were estimated for the as-quenched and annealed ribbons, respectively. The interplay of the low magnetostrictive properties, soft magnetic behavior, linearity of the thermomagnetic response, and flexibility of these ribbons place them as promising systems to probe curved surfaces and propose multifunctional devices, including magnetic field-specialized sensors.

12.
Crit Rev Food Sci Nutr ; : 1-43, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688280

RESUMO

Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.

13.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354460

RESUMO

Currently, there is an increasing need to develop highly sensitive plasmonic sensors able to provide good biocompatibility, flexibility, and optical stability to detect low levels of analytes in biological media. In this study, gold nanoparticles (Au NPs) were dispersed into chitosan membranes by spin coating. It has been demonstrated that these membranes are particularly stable and can be successfully employed as versatile plasmonic platforms for molecular sensing. The optical response of the chitosan/Au NPs interfaces and their capability to sense the medium's refractive index (RI) changes, either in a liquid or gas media, were investigated by high-resolution localized surface plasmon resonance (HR-LSPR) spectroscopy, as a proof of concept for biosensing applications. The results revealed that the lowest polymer concentration (chitosan (0.5%)/Au-NPs membrane) presented the most suitable plasmonic response. An LSPR band redshift was observed as the RI of the surrounding media was incremented, resulting in a sensitivity value of 28 ± 1 nm/RIU. Furthermore, the plasmonic membrane showed an outstanding performance when tested in gaseous atmospheres, being capable of distinguishing inert gases with only a 10-5 RI unit difference. The potential of chitosan/Au-NPs membranes was confirmed for application in LSPR-based sensing applications, despite the fact that further materials optimization should be performed to enhance sensitivity.


Assuntos
Quitosana , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Refratometria
14.
Sensors (Basel) ; 22(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236764

RESUMO

Titanium-copper alloy films with stoichiometry given by Ti1-xCux were produced by magnetron co-sputtering technique and analyzed in order to explore the suitability of the films to be applied as resistive temperature sensors with antimicrobial properties. For that, the copper (Cu) amount in the films was varied by applying different DC currents to the source during the deposition in order to change the Cu concentration. As a result, the samples showed excellent thermoresistivity linearity and stability for temperatures in the range between room temperature to 110 °C. The sample concentration of Ti0.70Cu0.30 has better characteristics to act as RTD, especially the αTCR of 1990 ×10-6°C-1. The antimicrobial properties of the Ti1-xCux films were analyzed by exposing the films to the bacterias S. aureus and E. coli, and comparing them with bare Ti and Cu films that underwent the same protocol. The Ti1-xCux thin films showed bactericidal effects, by log10 reduction for both bacteria, irrespective of the Cu concentrations. As a test of concept, the selected sample was subjected to 160 h reacting to variations in ambient temperature, presenting results similar to a commercial temperature sensor. Therefore, these Ti1-xCux thin films become excellent antimicrobial candidates to act as temperature sensors in advanced coating systems.


Assuntos
Anti-Infecciosos , Titânio , Ligas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Cobre , Escherichia coli , Staphylococcus aureus , Temperatura
15.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146392

RESUMO

In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film's surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film's surface and the tested gases, thereby improving the nanocomposite film's sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.

16.
Nanomaterials (Basel) ; 12(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35564234

RESUMO

Optical biosensors based on localized surface plasmon resonance (LSPR) are the future of label-free detection methods. This work reports the development of plasmonic thin films, containing Au nanoparticles dispersed in a TiO2 matrix, as platforms for LSPR biosensors. Post-deposition treatments were employed, namely annealing at 400 °C, to develop an LSPR band, and Ar plasma, to improve the sensitivity of the Au-TiO2 thin film. Streptavidin and biotin conjugated with horseradish peroxidase (HRP) were chosen as the model receptor-analyte, to prove the efficiency of the immobilization method and to demonstrate the potential of the LSPR-based biosensor. The Au-TiO2 thin films were activated with O2 plasma, to promote the streptavidin immobilization as a biorecognition element, by increasing the surface hydrophilicity (contact angle drop to 7°). The interaction between biotin and the immobilized streptavidin was confirmed by the detection of HRP activity (average absorbance 1.9 ± 0.6), following a protocol based on enzyme-linked immunosorbent assay (ELISA). Furthermore, an LSPR wavelength shift was detectable (0.8 ± 0.1 nm), resulting from a plasmonic thin-film platform with a refractive index sensitivity estimated to be 33 nm/RIU. The detection of the analyte using these two different methods proves that the functionalization protocol was successful and the Au-TiO2 thin films have the potential to be used as an LSPR platform for label-free biosensors.

17.
ACS Appl Bio Mater ; 5(3): 1267-1272, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35168328

RESUMO

The eradication of microorganisms from high traffic surfaces to prevent either viral or bacterial infections represents an urgent need, mainly in the scope of the present pandemic scenario. In this context, this work explores the dual functionality of titanium-copper thin films as pressure elements with antimicrobial properties, aiming for the implementation of touch and sensing capabilities in high traffic surfaces. Copper was employed as the antibacterial agent within a titanium matrix. The film's geometry and deposition parameters were varied in order to optimize antimicrobial and piezoresistive response. A considerable antimicrobial response has been obtained, increasing the copper amount (from 23 to 63 at. %) in the titanium matrix, leading to an outstanding 8 log10 CFU bacterial reduction in the case of Escherichia coli. Moreover, for the same amount of copper, the piezoresistive sensibility of the thin films increases up to a maximum gauge factor of 5.18 ± 0.09, which indicates an adequate electromechanical behavior for sensing applications. Our findings demonstrate the best combined antimicrobial and piezoresistive characteristics for the films with a Cu content of 63 at. %, indicating a potential use of these films for electromechanical sensor applications.


Assuntos
Anti-Infecciosos , Titânio , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cobre/farmacologia , Escherichia coli
18.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214278

RESUMO

This study aimed at introducing thin films exhibiting the localized surface plasmon resonance (LSPR) phenomenon with a reversible optical response to repeated uniaxial strain. The sensing platform was prepared by growing gold (Au) nanoparticles throughout a titanium dioxide dielectric matrix. The thin films were deposited on transparent polymeric substrates, using reactive magnetron sputtering, followed by a low temperature thermal treatment to grow the nanoparticles. The microstructural characterization of the thin films' surface revealed Au nanoparticle with an average size of 15.9 nm, an aspect ratio of 1.29 and an average nearest neighbor nanoparticle at 16.3 nm distance. The plasmonic response of the flexible nanoplasmonic transducers was characterized with custom-made mechanical testing equipment using simultaneous optical transmittance measurements. The higher sensitivity that was obtained at a maximum strain of 6.7%, reached the values of 420 nm/ε and 110 pp/ε when measured at the wavelength or transmittance coordinates of the transmittance-LSPR band minimum, respectively. The higher transmittance gauge factor of 4.5 was obtained for a strain of 10.1%. Optical modelling, using discrete dipole approximation, seems to correlate the optical response of the strained thin film sensor to a reduction in the refractive index of the matrix surrounding the gold nanoparticles when uniaxial strain is applied.

19.
Plants (Basel) ; 11(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35214803

RESUMO

Small rural places are largely absent from early medieval written sources, but they were profuse and relevant in regional settlements and economies. Only through archaeological and archaeobotanical investigation is it possible to unveil their structure and productive strategies; however, this kind of investigation is still uncommon in Iberia. Here, the assemblage of fruits/seeds, wood charcoal, and food remains from Senhora do Barrocal (SB) (Sátão, Portugal) will be presented and discussed in order to understand the crop production, processing, and storage. The site was destroyed by a fire somewhere between the 10th and the 11th centuries AD, which allowed the preservation of abundant plant remains in a storage area. Charcoal analyses suggest that the building was made with oak and chestnut timber. The massive fruits/seeds assemblage was dominated by cereals, mostly oat and rye, but also barley, millet, and naked wheat, some fully dehusked, others still hulled. Furthermore, evidence of food products has also been found, suggesting that the area was used for the storage of multiple foods and crops at different processing stages. SB is a good example of how communities adopted a diverse set of crops and multifaceted storage strategies to prevent food shortages and to endure in a harsh environment.

20.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884159

RESUMO

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti-Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti-Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti-Me intermetallic thin films, and evaluation of the impact of the electrode-skin impedance on biopotential sensing. The electrode-skin impedance results support the reusability and the high degree of reliability of the Ti-Me dry electrodes. The Ti-Al films revealed the least performance as biopotential electrodes, while the Ti-Au system provided excellent results very close to the Ag/AgCl reference electrodes.


Assuntos
Nanoestruturas , Titânio , Impedância Elétrica , Eletrodos , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...