Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Reprod Toxicol ; 128: 108637, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876429

RESUMO

Ketoconazole (KTZ) is widely used as a fungicide, but it is also known to target steroid hormone formation which may affect female reproductive health. Our study aims to investigate the effects of KTZ on in vitro matured bovine cumulus-oocyte complexes (COCs), as a model for female reproductive toxicity. Cumulus cells of in vitro maturing COCs produce progesterone and pregnenolone, but exposure to 10-6 M KTZ effectively blocked the synthesis of these hormones. Exposure to lower concentrations of KTZ (i.e. 10-7 M and 10-8 M) had no such effect on steroidogenesis compared to the 0.1 % v/v DMSO vehicle control. Classical parameters of in vitro COC maturation, such as oocyte nuclear maturation to the metaphase II stage and expansion of the cumulus investment, were not affected by any KTZ concentration tested. Apoptosis and necrosis levels were also not altered in cumulus cells or oocytes exposed to KTZ. Moreover, oocytes exposed to KTZ during maturation showed normal cleavage and early embryo development up to day 8 post fertilization; albeit a statistically significant decrease was observed in day 8 blastocysts produced from oocytes exposed to the lowest concentration of 10-8 M KTZ. When unexposed mature oocytes were fertilized, followed by embryo culture for 8 days under KTZ exposure, no adverse effects in embryo cleavage and blastocyst formation were observed. In conclusion, KTZ has no major impact on in vitro bovine oocyte maturation and blastocyst formation in our study, even at concentrations blocking steroidogenesis.

2.
Front Toxicol ; 4: 811285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686045

RESUMO

Endocrine disrupting chemicals (EDCs) can interfere with normal hormonal action and regulation. Exposure of women to EDCs has been associated with adverse reproductive health outcomes. The assays currently used to identify EDCs that elicit female reproductive toxicity lack screening tests that address effects on the maturation of oocytes, a process that enables them to be fertilized and develop into embryos. Here, a screening method employing the bovine model of in vitro oocyte maturation and embryo production is described. Endpoints explored address important events in oocyte maturation and developmental competence acquisition. To test the method, the effects of the known human EDC diethylstilbestrol (DES; an estrogen receptor agonist) were evaluated in a range of concentrations (10-9 M, 10-7 M, 10-5 M). Bovine oocytes were exposed to DES during in vitro maturation (IVM) or embryos were exposed during in vitro embryo culture (IVC). The endpoints evaluated included nuclear maturation, mitochondrial redistribution, cumulus cell expansion, apoptosis, and steroidogenesis. DES-exposed oocytes were fertilized to record embryo cleavage and blastocyst rates to uncover effects on developmental competence. Similarly, the development of embryos exposed to DES during IVC was monitored to assess the impact on early embryo development. Exposure to 10-9 M or 10-7 M DES did not affect the endpoints addressing oocyte maturation or embryo development. However, there were considerable detrimental effects observed in oocytes exposed to 10-5 M DES. Specifically, compared to vehicle-treated oocytes, there was a statistically significant reduction in nuclear maturation (3% vs 84%), cumulus expansion (2.8-fold vs 3.6-fold) and blastocyst rate (3% vs 32%). Additionally, progesterone and pregnenolone concentrations measured in IVM culture media were increased. The screening method described here shows that bovine oocytes were sensitive to the action of this particular chemical (i.e., DES), albeit at high concentrations. In principle, this method provides a valuable tool to assess the oocyte maturation process and early embryo development that can be used for reproductive toxicity screening and possibly EDC identification. Further studies should include EDCs with different mechanisms of action and additional endpoints to further demonstrate the applicability of the bovine oocyte model for chemical risk assessment purposes and EDC identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...