Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Euro Surveill ; 29(20)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757289

RESUMO

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Assuntos
Aedes , Vírus Chikungunya , Vírus da Dengue , Zika virus , Animais , Aedes/virologia , Humanos , Zika virus/isolamento & purificação , Vírus da Dengue/isolamento & purificação , Vírus Chikungunya/isolamento & purificação , Paris , Mosquitos Vetores/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Arbovírus/isolamento & purificação , Infecções por Arbovirus/transmissão , Flavivirus/isolamento & purificação , França , Dengue/transmissão , Dengue/epidemiologia , Infecção por Zika virus/transmissão
2.
IJID Reg ; 11: 100360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38596820

RESUMO

Objectives: Our study targets the potential of the local urban mosquito Aedes aegypti to experimentally transmit chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). Methods: We collected eggs and adults of Ae. aegypti in Medellín, Colombia (from February to March 2020) for mosquito experimental infections with DENV, CHIKV, YFV and ZIKV and viral detection using the BioMark Dynamic arrays system. Results: We show that Ae. aegypti from Medellín was more prone to become infected, to disseminate and transmit CHIKV and ZIKV than DENV and YFV. Conclusions: Thus, in Colombia, chikungunya is the most serious threat to public health based on our vector competence data.

3.
Nat Commun ; 15(1): 1236, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336944

RESUMO

The mosquito-borne disease, Yellow fever (YF), has been largely controlled via mass delivery of an effective vaccine and mosquito control interventions. However, there are warning signs that YF is re-emerging in both Sub-Saharan Africa and South America. Imported from Africa in slave ships, YF was responsible for devastating outbreaks in the Caribbean. In Martinique, the last YF outbreak was reported in 1908 and the mosquito Aedes aegypti was incriminated as the main vector. We evaluated the vector competence of fifteen Ae. aegypti populations for five YFV genotypes (Bolivia, Ghana, Nigeria, Sudan, and Uganda). Here we show that mosquito populations from the Caribbean and the Americas were able to transmit the five YFV genotypes, with YFV strains for Uganda and Bolivia having higher transmission success. We also observed that Ae. aegypti populations from Martinique were more susceptible to YFV infection than other populations from neighboring Caribbean islands, as well as North and South America. Our vector competence data suggest that the threat of re-emergence of YF in Martinique and the subsequent spread to Caribbean nations and beyond is plausible.


Assuntos
Aedes , Febre Amarela , Animais , Humanos , Vírus da Febre Amarela/genética , Mosquitos Vetores , Índias Ocidentais , Região do Caribe/epidemiologia , Uganda
4.
Front Microbiol ; 14: 1324069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298539

RESUMO

West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3'UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3'UTR regions are important in Cx. pipiens infection and possibly in vector competence.

5.
Mem. Inst. Oswaldo Cruz ; 104(4): 632-635, July 2009. tab
Artigo em Inglês | LILACS | ID: lil-523732

RESUMO

Aedes albopictus was responsible for transmission in the first outbreak of chikungunya (CHIK) on La Réunion Island, Indian Ocean, in 2005-2006. The magnitude of the outbreak on this island, which had been free of arboviral diseases for over 30 years, as well as the efficiency of Ae. albopictus as the main vector, raises questions about the maintenance of the CHIK virus (CHIKV) through vertical transmission mechanisms. Few specimens collected from the field as larvae were found to be infected. In this study, Ae. albopictus originating from La Réunion were orally infected with a blood-meal containing 10(8) pfu/mL of the CHIKV epidemic strain (CHIKV 06.21). Eggs from the first and second gonotrophic cycles were collected and raised to the adult stage. The infectious status of the progeny was checked (i) by immunofluorescence on head squashes of individual mosquitoes to detect the presence of viral particles or (ii) by quantitative RT-PCR on mosquito pools to detect viral RNA. We analysed a total of 1,675 specimens from the first gonotrophic cycle and 1,709 from the second gonotrophic cycle without detecting any viral particles or viral RNA. These laboratory results are compared to field records.


Assuntos
Animais , Aedes/virologia , Vírus Chikungunya/patogenicidade , Insetos Vetores/virologia , Infecções por Alphavirus/transmissão , Vírus Chikungunya/fisiologia , Imunofluorescência , Oceano Índico , Transmissão Vertical de Doenças Infecciosas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Viral/análise
6.
Mem. Inst. Oswaldo Cruz ; 97(3): 437-439, Apr. 2002. tab
Artigo em Inglês | LILACS | ID: lil-307985

RESUMO

The oral susceptibility to yellow fever virus was evaluated in 23 Aedes aegypti samples from Brazil. Six Ae. aegypti samples from Africa, America and Asia were also tested for comparison. Mosquito samples from Asia showed the highest infection rates. Infection rates for the Brazilian Ae. aegypti reached 48.6 percent, but were under 13 percent in 60 percent of sample tested. We concluded that although the low infection rates estimated for some Brazilian mosquito samples may not favor the establishment of urban cycle of yellow fever in some parts of the country, the founding of Ae. aegypti of noteworthy susceptibility to the virus in cities located in endemic and transition areas of sylvatic yellow fever, do pose a threat of the re-emergence of the urban transmission of the disease in Brazil


Assuntos
Animais , Masculino , Feminino , Coelhos , Aedes , Insetos Vetores , Febre Amarela , Vírus da Febre Amarela , África Ocidental , Sudeste Asiático , Brasil , Galinhas , Boca , América do Norte , Fatores de Risco , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...