Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448535

RESUMO

Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.

2.
Biomed Pharmacother ; 127: 110178, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371317

RESUMO

INTRODUCTION: Chagas disease, caused by the protozoan parasiteTrypanosoma cruzi, has no effective treatment available. On the other hand, microalgae are aquatic organisms that constitute an interesting reservoir of biologically active metabolites. Moreover, some species of green and red algae present anti-protozoan activity. Our aim was to study the antiparasitic effects of aqueous, methanolic and ethanolic extracts from different microalgae. METHODS AND RESULTS: Our results show that the methanolic extracts of S. obliquus and T. suecica as well as the ethanolic extracts of C. reinhardtii and T. suecica present trypanocidal activity on the infective extracellular trypomastigotes and intracellular amastigotes. In addition, the ethanolic extract of C. reinhardtii potentiates the activity of the conventional antichagasic drug nifurtimox. In order to identify some potential compounds with trypanocidal activity, we performed a phytochemical screening analyzing the presence of phenolic compounds, pigments and terpenoids. CONCLUSION: The different microalgae extracts, particularly the ethanolic extract ofC. reinhardtii, are promising potential candidates for the development of future natural antichagasic drugs.


Assuntos
Doença de Chagas/tratamento farmacológico , Microalgas/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Chlorocebus aethiops , Etanol/química , Metanol/química , Células Vero
3.
Int J Microbiol ; 2019: 7803726, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737073

RESUMO

Nosocomial infections caused by bacteria are one of the main public health problems. Moreover, the resistance to antibiotics by these bacteria makes it necessary to find new treatments to fight them. Objective. To evaluate the antibacterial activity of Luma apiculata (DC.) Burret extracts on bacteria of clinical importance. Materials and Methods. In this study, extracts were obtained at room temperature by successive extraction of L. apiculata leaves, flowers, and branches and treated separately with solvents of ascending polarity (i.e., hexane, methylene dichloride, ethyl acetate, ethanol, methanol, and water) to extract the compounds depending on their polarity. Then, the extract's antibacterial activity was tested against Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus sp, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli. Results. The hexane extract of L. apiculata leaves resulted to be active against all bacteria tested. Among them, S. aureus showed to be the more susceptible, showing a minimum inhibitory concentration (MIC) of 120 µg/ml. In addition, a growth curve was performed, and colonies were counted. A decrease in bacterial growth was observed when the hexane extract of L. apiculata leaves was added. Besides, the hexane extracts of L. apiculata flowers resulted to be active against all Gram-positive tested bacteria. However, at higher concentrations, this extract resulted inactive for the Gram-negative bacteria tested. The hexane extract of L. apiculata branches resulted to be inactive in all cases. The extracts obtained treating separately leaves, flowers, or branches with solvents of major polarity than the hexane in a successive extraction of ascending polarity methodology resulted also to be inactive as an antimicrobial against all bacteria tested. Discussion/Conclusion. The hexane extract of L. apiculata leaves showed the lower MIC against S. aureus when compared with extracts obtained from other parts of the plant. The growth curve and the colonies count suggest a bacteriostatic activity of the L. apiculata leaves extract against Staphylococcus aureus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...