Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035953

RESUMO

Poly(vinyl alcohol) (PVA) biocomposite films reinforced with cellulose nanofibrils (CNF) and biologically active tannic acid (TA) were prepared. The influence of different concentrations of CNF and TA in the PVA polymer matrix was investigated in terms of mechanical properties, thermal properties and hydrophobicity improvement of the prepared films. The results showed that in all cases the addition of CNF and TA improved the values of tensile strength and elastic modulus. The PVA film with 10 % CNF exhibited a 30 % higher tensile strength, and the three-component PVA film with 2 % CNF and 10 % TA (P2C10T) exhibited a 40 % higher tensile strength compared to the neat PVA film. The thermal properties (Tg, Tonset) of the PVA biocomposite films were greatly improved, with a significant effect observed for the three-component PVA films. The Tg of the PVA film with 10 % CNF and 10 % TA was 87 °C, 12 °C higher than that of the neat PVA film. For three-component PVA biocomposites with 4 % and 6 % CNF and with all weight percentages of TA, the Tonset shifted to a higher temperature range by about 30 °C compared to the neat PVA film. The PVA film with 2 % CNF and 10 % TA exhibited about a 20° higher contact angle than the neat PVA film. Moreover, the addition of both fillers to the PVA matrix resulted in PVA biocomposites with lower water absorption. PVA film with 10 % TA absorbed about 90 % less water and PVA film with 10 % CNF and 10 % TA absorbed about 80 % less water than the neat PVA film after the films were soaked in water for one hour. The better properties of the composite films produced are due to hydrogen and ester bonds between the components of the composite, which was confirmed by FT-IR spectroscopy. Antioxidant effective films were also obtained due to the biologically active TA to the PVA and PVA/CNF systems.


Assuntos
Celulose , Polifenóis , Álcool de Polivinil , Álcool de Polivinil/química , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Madeira , Resistência à Tração , Etanol , Água/química
2.
Front Plant Sci ; 13: 860734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422821

RESUMO

Wood in outdoor applications is subject to various decomposition factors. Wood degradation can be prevented by construction details, biocide protection of wood, wood modification or selection of naturally durable species. Unfortunately, most species in Europe do not have naturally durable wood. Imported tree species represent a new pool from which we can draw wood species with better natural durability and better resilience towards climate change. The performance of wood when used outdoors depends on the biologically active compounds (extractives) and the water exclusion efficacy. Considering decay, presence of biologically active compounds and water exclusion efficacy, we can estimate the density, modulus of elasticity, extractive content and resistance dose, which reflects the material properties of wood. Recently, the most commonly used model for this purpose is Meyer-Veltrup. Literature data indicate that the durability of the wood from native and new sites is not always comparable, so it is necessary to determine the resistance of non-native wood species from new sites. This paper presents original data on the wood's overall durability from American Douglas fir (Pseudotsuga menziesii) grown in Slovenia. Experimental data show that the mature heartwood of Douglas fir is more durable than the wood of European larch (Larix decidua). Durability can be attributed to good water exclusion efficacy and inherent durability. Inherent durability is primarily the result of the high content of extractives. Based on the results, it can be concluded that American Douglas fir grown in Central Europe has a high potential for outdoor use.

3.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615418

RESUMO

The main objective of our study was to investigate the possible differences in the chemical composition of extractives from the bark of silver fir (Abies alba) with respect to the location of the bark sample on the tree, viz. differences in extract composition between stem bark and branch bark samples. Extractives in the bark samples from branches, depending on the distance of the sample from the trunk, were also analysed, and the stem bark samples were analysed with respect to their inner and outer parts. The results of the chemical analysis of extractives were supported by information about their antifungal and antioxidant effects. After felling and sampling silver fir trees, the collected bark samples were ground and freeze-dried. Extraction of bark samples was followed by a system of accelerated extraction using only water as a solvent. The extracts were analysed chemically using gravimetry, spectrophotometry and chromatography. Free-radical-scavenging activity was measured using the DPPH method, and the antifungal effect towards three moulds and three wood-decaying fungi was investigated with antifungal assay using the agar well diffusion method. It was found that the moisture content in bark samples decreased intensively just after the bark samples were peeled off the stem. Detailed chromatographic analysis showed that the bark extracts contained 14 compounds, among which phenolic acids, flavonoids and lignans were found to be the characteristic ones. The content of hydrophilic extractives in the branch bark samples decreased with increasing distance of the sample location from the tree stem. The largest amounts of phenolic extractives were measured in stem bark, followed by branch bark sampled at the point at which the branch entered the tree. Analysis of the separated parts of the bark showed that the outer layers of stem bark contained larger amounts of phenolic extractives, as well catechin and epicatechin, compared to the inner layers. Concentrated extracts of branch bark showed the largest free-radical-scavenging activity among the investigated samples, while strong antifungal effects of the bark extract were not found.


Assuntos
Abies , Catequina , Abies/química , Extratos Vegetais/química , Casca de Planta/química , Antifúngicos/farmacologia , Antifúngicos/análise , Antioxidantes/farmacologia , Antioxidantes/análise , Fenóis/análise , Catequina/análise
4.
Molecules ; 26(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770820

RESUMO

The chemical composition of extractives in the sapwood (SW), heartwood (HW), knotwood (KW), and branchwood (BW of silver fir (Abies alba Mill.) was analyzed, and their antifungal and antioxidant properties were studied. In addition, the variability of extractives content in a centripetal direction, i.e., from the periphery of the stem towards the pith, was investigated. The extracts were analyzed chemically with gravimetry, spectrophotometry, and chromatography. The antifungal and antioxidative properties of the extracts were evaluated by the agar well diffusion method and the diphenyl picrylhydrazyl radical scavenging method. Average amounts of hydrophilic extractives were higher in KW (up to 210.4 mg/g) and BW (148.6 mg/g) than in HW (34.1 mg/g) and SW (14.8 mg/g). Extractives identified included lignans (isolariciresinol, lariciresinol, secoisolariciresinol, pinoresinol, matairesinol) phenolic acids (homovanillic acid, coumaric acid, ferulic acid), and flavonoids epicatechin, taxifolin, quercetin). Secoisolariciresinol was confirmed to be the predominant compound in the KW (29.8 mg/g) and BW (37.6 mg/g) extracts. The largest amount of phenolic compounds was extracted from parts of knots (281.7 mg/g) embedded in the sapwood and from parts of branches (258.9 mg/g) adjacent to the stem. HW contained more lignans in its older sections. Hydrophilic extracts from knots and branches inhibited the growth of wood-decaying fungi and molds. KW and BW extracts were better free radical scavengers than HW extracts. The results of the biological activity tests suggest that the protective function of phenolic extracts in silver fir wood can also be explained by their antioxidative properties. The results of this study describe BW as a potential source of phenolic extractives in silver fir.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Hidroxibenzoatos/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Madeira/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Basidiomycota/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Fusarium/efeitos dos fármacos , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Lignanas/química , Lignanas/isolamento & purificação , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polyporaceae/efeitos dos fármacos , Schizophyllum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...