Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39066368

RESUMO

Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb), remains a widespread fatal health issue that becomes significantly detrimental when coupled with HIV. This study explores the host's innate and adaptive immune system response to TB in HIV immunocompromised patients, highlighting the significant role of CD8+ T cells. While the crucial role of macrophages and cytokines, like TNF-α and IFN-γ, in managing the host's immune response to M. tb is examined, the emphasis is on the changes that occur as a result of HIV coinfection. With the progression of HIV infection, the primary source of IFN-γ changes from CD4+ to CD8+ T cells, especially when latent TB advances to an active state. This study sheds light on the necessity of developing new preventative measures such as vaccines and new treatment approaches to TB, especially for immunocompromised patients, who are at a higher risk of life-threatening complications due to TB-HIV coinfection.

2.
Discov Med ; 36(185): 1091-1108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926097

RESUMO

This review comprehensively explores the dysregulation of Gamma Delta T-cells, CD8+ T Cells, and Natural Killer T Cells in the context of Human Immunodeficiency Virus (HIV) infection and its implications for brain pathology. It encompasses an overview of the HIV disease process, immune cell dysregulation, association with neurological diseases, and the critical role of Glutathione (GSH) in T-cell function. The alterations in Gamma Delta T-cells during chronic infection, the intricate dynamics of Vδ1 and Vδ2 subsets, and the potential of Vγ9Vδ2 T cells in inhibiting HIV replication are discussed. Additionally, the review addresses the exhaustion, impaired cytotoxicity, and premature senescence of CD8+ T cells, as well as the dysregulation of Natural Killer Cells (NKCs) and their impact on overall immune system activity. Furthermore, it examines the role of Gamma Delta (γδ) T-cells in brain injuries, infections, and tumors and highlights the therapeutic implications of elevated GSH levels in promoting a T helper 1 (Th1) immune response. However, HIV-infected patients with decreased GSH exhibit a T helper 2 (Th2) bias, compromising protection against intracellular pathogens. Finally, the review discusses studies in murine models demonstrating the impact of GSH levels on immune responses and underscores the therapeutic potential of targeting GSH to enhance immunity in HIV patients. Overall, this review provides valuable insights into the complex interplay between immune dysregulation, GSH levels, and HIV-associated brain pathology, offering insights into potential therapeutic avenues for mitigating immune compromise and neurological impairments in HIV patients.


Assuntos
Encéfalo , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Glutationa , Infecções por HIV , Humanos , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Glutationa/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Células Matadoras Naturais/imunologia , Animais
4.
Biology (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927340

RESUMO

Eales' Disease is an idiopathic peripheral retinal vasculopathy first described by British ophthalmologist Henry Eales in 1880. Most prevalent in healthy young males, Eales' Disease often presents with symptoms of sudden blurry or decreased vision and floaters. Although no clear, standardized stage of the disease exists, it progresses through three overlapping phases-peripheral periphlebitis, ischemic capillary ischemia, and retinal neovascularization. The etiology of Eales' Disease is unknown and appears to be multifactorial, but post-TB hypersensitivity to tuberculoprotein and M. tuberculosis DNA is the most potential cause in the etiology of Eales' Disease. With a thorough examination of the clinical presentation and diagnosis of Eales' Disease-incorporating the latest clinical findings related to the condition-the investigation for Eales' Disease extends to explore recent potential connections with other ocular conditions or possible cofactors, such as glaucoma, uncontrolled diabetes, drug abuse, or inherited medical conditions. Moreover, focusing on critical insights into the treatment of Eales' Disease across its various stages of progression, the overarching goal of the paper is to refine and suggest possible future diagnostic and therapeutic strategies. Widening our understanding of pathophysiology and utilizing various treatment options for individual patients holds immense potential for advancing ocular medicine and optimizing patient care for people with this disease with unknown pathophysiology.

5.
Biomedicines ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927576

RESUMO

Individuals with uncontrolled diabetes are highly susceptible to tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) infection. Novel treatments for TB are needed to address the increased antibiotic resistance and hepatoxicity. Previous studies showed that the administration of liposomal glutathione (L-GSH) can mitigate oxidative stress, bolster a granulomatous response, and diminish the M. tb burden in the lungs of M. tb-infected mice. Nonetheless, the impact of combining L-GSH with conventional TB treatment (RIF) on the cytokine levels and granuloma formation in the livers of diabetic mice remains unexplored. In this study, we evaluated hepatic cytokine profiles, GSH, and tissue pathologies in untreated and L-GSH, RIF, and L-GSH+RIF treated diabetic (db/db) M. tb-infected mice. Our results indicate that treatment of M. tb-infected db/db mice with L-GSH+RIF caused modulation in the levels of pro-inflammatory cytokines and GSH in the liver and mitigation in the granuloma size in hepatic tissue. Supplementation with L-GSH+RIF led to a decrease in the M. tb burden by mitigating oxidative stress, promoting the production of pro-inflammatory cytokines, and restoring the cytokine balance. These findings highlight the potential of L-GSH+RIF combination therapy for addressing active EPTB, offering valuable insights into innovative treatments for M. tb infections.

6.
Curr Issues Mol Biol ; 46(6): 5530-5549, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921002

RESUMO

A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.

7.
Front Aging ; 5: 1385963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903242

RESUMO

This paper tackles the complex interplay between Human Immunodeficiency virus (HIV-1) and Mycobacterium tuberculosis (M. tuberculosis) infections, particularly their contribution to immunosenescence, the age-related decline in immune function. Using the current literature, we discuss the immunological mechanisms behind TB and HIV-induced immunosenescence and critically evaluate the BCG (Bacillus Calmette-Guérin) vaccine's role. Both HIV-1 and M. tuberculosis demonstrably accelerate immunosenescence: M. tuberculosis through DNA modification and heightened inflammation, and HIV-1 through chronic immune activation and T cell production compromise. HIV-1 and M. tuberculosis co-infection further hastens immunosenescence by affecting T cell differentiation, underscoring the need for prevention and treatment. Furthermore, the use of the BCG tuberculosis vaccine is contraindicated in patients who are HIV positive and there is a lack of investigation regarding the use of this vaccine in patients who develop HIV co-infection with possible immunosenescence. As HIV does not currently have a vaccine, we focus our review more so on the BCG vaccine response as a result of immunosenescence. We found that there are overall limitations with the BCG vaccine, one of which is that it cannot necessarily prevent re-occurrence of infection due to effects of immunosenescence or protect the elderly due to this reason. Overall, there is conflicting evidence to show the vaccine's usage due to factors involving its production and administration. Further research into developing a vaccine for HIV and improving the BCG vaccine is warranted to expand scientific understanding for public health and beyond.

8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892443

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Morte Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Apoptose , Imunidade Inata , Autofagia/imunologia , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/microbiologia
9.
Diseases ; 12(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534973

RESUMO

Meningitis is an inflammatory condition affecting the meninges surrounding the brain and spinal cord. Meningitis can be triggered by various factors, including infectious agents like viruses and bacteria and non-infectious contributors such as cancer or head injuries. The impact of meningitis on the central nervous system involves disruptions in the blood-brain barrier, cellular infiltrations, and structural alterations. The clinical features that differentiate between tuberculous meningitis (TBM) and non-tuberculous meningitis (NTM) are discussed in this review and aid in accurate diagnosis. The intricate interplay of reactive oxygen species, ferroptosis, and reactive nitrogen species within the central nervous system reveals a promising field of research for innovative therapeutic strategies tailored to TBM. This review highlights the alternative treatments targeting oxidative stress-induced TBM and ferroptosis, providing potential avenues for intervention in the pathogenesis of this complex condition.

10.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474196

RESUMO

Human immunodeficiency virus (HIV) is a major cause of death worldwide. Without appropriate antiretroviral therapy, the infection can develop into acquired immunodeficiency syndrome (AIDS). AIDS leads to the dysregulation of cell-mediated immunity resulting in increased susceptibility to opportunistic infections and excessive amounts of inflammatory cytokines. HIV-positive individuals also demonstrate diminished glutathione (GSH) levels which allows for increased viral replication and increased pro-inflammatory cytokine release, further contributing to the high rates of mortality seen in patients with HIV. Adequate GSH supplementation has reduced inflammation and slowed the decline of CD4+ T cell counts in HIV-positive individuals. We aim to review the current literature regarding the role of GSH in cell-mediated immune responses in individuals with HIV- and AIDS-defining illnesses.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Humanos , HIV , Linfócitos T CD4-Positivos , Citocinas , Glutationa , Imunidade Celular
11.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38539805

RESUMO

Thrombotic microangiopathy has been identified as a dominant mechanism for increased mortality and morbidity in coronavirus disease 2019 (COVID-19). In the context of severe COVID-19, patients may develop immunothrombosis within the microvasculature of the lungs, which contributes to the development of acute respiratory distress syndrome (ARDS), a leading cause of death in the disease. Immunothrombosis is thought to be mediated in part by increased levels of cytokines, fibrin clot formation, and oxidative stress. Glutathione (GSH), a well-known antioxidant molecule, may have therapeutic effects in countering this pathway of immunothrombosis as decreased levels of (GSH) have been associated with increased viral replication, cytokine levels, and thrombosis, suggesting that glutathione supplementation may be therapeutic for COVID-19. GSH supplementation has never been explored as a means of treating COVID-19. This study investigated the effectiveness of liposomal glutathione (GSH) as an adjunctive therapy for peripheral blood mononuclear cells (PBMC) treated with SARS CoV-2 spike protein. Upon the addition of GSH to cell cultures, cytokine levels, fibrin clot formation, oxidative stress, and intracellular GSH levels were measured. The addition of liposomal-GSH to PBMCs caused a statistically significant decrease in cytokine levels, fibrin clot formation, and oxidative stress. The addition of L-GSH to spike protein and untreated PBMCs increased total intracellular GSH, decreased IL-6, TGF-beta, and TNF-alpha levels, decreased oxidative stress, as demonstrated through MDA, and decreased fibrin clot formation, as detected by fluorescence microscopy. These findings demonstrate that L-GSH supplementation within a spike protein-treated PBMC cell culture model reduces these factors, suggesting that GSH supplementation should be explored as a means of reducing mediators of immunothrombosis in COVID-19.

12.
Biomedicines ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540171

RESUMO

This review explores ferroptosis, a form of regulated cell death reliant on iron-induced phospholipid peroxidation, in diverse physiological and pathological contexts, including neurodegenerative disorders, and ischemia-reperfusion. In the realm of cardiovascular diseases, it significantly contributes to cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and restrictive cardiomyopathy. Ferroptosis involves intricate interactions within cellular iron metabolism, lipid peroxidation, and the balance between polyunsaturated and monounsaturated fatty acids. Molecularly, factors like p53 and NRF2 impact cellular susceptibility to ferroptosis under oxidative stress. Understanding ferroptosis is vital in cardiomyopathies, where cardiac myocytes heavily depend on aerobic respiration, with iron playing a pivotal role. Dysregulation of the antioxidant enzyme GPX4 is linked to cardiomyopathies, emphasizing its significance. Ferroptosis's role in myocardial ischemia-reperfusion injury, exacerbated in diabetes, underscores its relevance in cardiovascular conditions. This review explores the connection between ferroptosis, the NRF2 pathway, and atherosclerosis, emphasizing their roles in protecting cells from oxidative stress and maintaining iron balance. It discusses the use of iron chelating agents in managing iron overload conditions, with associated benefits and challenges. Finally, it highlights the importance of exploring therapeutic strategies that enhance the glutathione (GSH) system and the potential of natural compounds like quercetin, terpenoids, and phenolic acids in reducing oxidative stress.

13.
Discov Med ; 36(182): 437-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531785

RESUMO

This research project delves into the multifaceted dynamics of Mycobacterium tuberculosis (M.tb) endocarditis, a significant yet uncommon manifestation of tuberculosis (TB). Beginning with an overview of M.tb and the global challenges posed by TB, we navigate through the bacterium's evolution, transmission modes, and the intricate host immune response. The pathology and pathophysiology of M.tb endocarditis are explored, emphasizing its complexities and the host's efforts to contain the pathogen. The study extends to atypical mycobacterial endocarditis, highlighting the emergence of species like M.chimaera, M.fortuitum, and M.chelonae, with a focus on their association with life-threatening mycobacterial endocarditis. Clinical presentations and complications of M.tb endocarditis are detailed, addressing challenges in diagnosis, drug-resistant, co-infections with Human Immunodeficiency Virus (HIV), and potential sepsis. The research underscores the need for a deeper understanding of M.tb endocarditis to enhance prevention, diagnosis, and treatment strategies. Examining the genetic and environmental factors influencing M.tb endocarditis, the study discusses the interplay of immune-related genes, environmental conditions, and predispositions contributing to infection susceptibility. Despite challenges in treatment due to its rarity, the research highlights current protocols, surgical interventions, and promising pharmaceutical developments. Lastly, unraveling these intricate factors is crucial for refining strategies and conducting large-scale trials to address this global health threat effectively.


Assuntos
Endocardite , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/prevenção & controle
14.
Viruses ; 16(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543687

RESUMO

The co-occurrence of human immunodeficiency virus (HIV) and tuberculosis (TB) infection poses a significant global health challenge. Treatment of HIV and TB co-infection often necessitates combination therapy involving antiretroviral therapy (ART) for HIV and anti-TB medications, which introduces the potential for drug-drug interactions (DDIs). These interactions can significantly impact treatment outcomes, the efficacy of treatment, safety, and overall patient well-being. This review aims to provide a comprehensive analysis of the DDIs between anti-HIV and anti-TB drugs as well as potential adverse effects resulting from the concomitant use of these medications. Furthermore, such findings may be used to develop personalized therapeutic strategies, dose adjustments, or alternative drug choices to minimize the risk of adverse outcomes and ensure the effective management of HIV and TB co-infection.


Assuntos
Fármacos Anti-HIV , Coinfecção , Infecções por HIV , Tuberculose , Humanos , Coinfecção/tratamento farmacológico , Coinfecção/complicações , HIV , Tuberculose/complicações , Tuberculose/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Interações Medicamentosas , Fármacos Anti-HIV/efeitos adversos
15.
Clin Pract ; 14(1): 198-213, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391403

RESUMO

Tuberculosis (TB), a respiratory disease caused by Mycobacterium tuberculosis (Mtb), is a significant cause of mortality worldwide. The lung, a breeding ground for Mtb, was once thought to be a sterile environment, but has now been found to host its own profile of microbes. These microbes are critical in the development of the host immune system and can produce metabolites that aid in host defense against various pathogens. Mtb infection as well as antibiotics can shift the microbial profile, causing dysbiosis and dampening the host immune response. Additionally, increasing cases of drug resistant TB have impacted the success rates of the traditional therapies of isoniazid, rifampin, pyrazinamide, and ethambutol. Recent years have produced tremendous research into the human microbiome and its role in contributing to or attenuating disease processes. Potential treatments aimed at altering the gut-lung bacterial axis may offer promising results against drug resistant TB and help mitigate the effects of TB.

16.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338937

RESUMO

Despite the availability of antibiotic therapy, tuberculosis (TB) is prevailing as a leading killer among human infectious diseases, which highlights the need for better intervention strategies to control TB. Several animal model systems, including mice, guinea pigs, rabbits, and non-human primates have been developed and explored to understand TB pathogenesis. Although each of these models contributes to our current understanding of host-Mycobacterium tuberculosis (Mtb) interactions, none of these models fully recapitulate the pathological spectrum of clinical TB seen in human patients. Recently, humanized mouse models are being developed to improvise the limitations associated with the standard mouse model of TB, including lack of necrotic caseation of granulomas, a pathological hallmark of TB in humans. However, the spatial immunopathology of pulmonary TB in humanized mice is not fully understood. In this study, using a novel humanized mouse model, we evaluated the spatial immunopathology of pulmonary Mtb infection with a low-dose inoculum. Humanized NOD/LtSscidIL2Rγ null mice containing human fetal liver, thymus, and hematopoietic CD34+ cells and treated with human cytokines were aerosol challenged to implant <50 pathogenic Mtb (low dose) in the lungs. At 2 and 4 weeks post infection, the tissue bacterial load, disease pathology, and spatial immunohistology were determined in the lungs, liver, spleen, and adipose tissue using bacteriological, histopathological, and immunohistochemical techniques. The results indicate that implantation of <50 bacteria can establish a progressive disease in the lungs that transmits to other tissues over time. The disease pathology in organs correspondingly increased with the bacterial load. A distinct spatial distribution of T cells, macrophages, and natural killer cells were noted in the lung granulomas. The kinetics of spatial immune cell distribution were consistent with the disease pathology in the lungs. Thus, the novel humanized model recapitulates several key features of human pulmonary TB granulomatous response and can be a useful preclinical tool to evaluate potential anti-TB drugs and vaccines.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Coelhos , Animais , Camundongos , Cobaias , Camundongos Endogâmicos NOD , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/patologia , Tuberculose/microbiologia , Pulmão/patologia , Granuloma/patologia
17.
Cells ; 12(22)2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998388

RESUMO

The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (P13K/AKT/mTOR) pathway plays a key role in tuberculosis (TB) pathogenesis and infection. While the activity levels of this pathway during active infection are still debated, manipulating this pathway shows potential benefit for host-directed therapies. Some studies indicate that pathway inhibitors may have potential for TB treatment through upregulation of autophagy, while other studies do not encourage the use of these inhibitors due to possible host tissue destruction by Mycobacterium tuberculosis (M. tb) and increased infection risk. Investigating further clinical trials and their use of pathway inhibitors is necessary in order to ascertain their potential for TB treatment. This paper is particularly focused on the drug everolimus, an mTOR inhibitor. One of the first clinical trials sponsored by the Aurum Institute showed potential benefit in using everolimus as an adjunctive therapy for tuberculosis. Infection with tuberculosis is associated with a metabolic shift from oxidative phosphorylation towards glycolysis. The everolimus arm in the clinical trial showed further reduction than the control for both maximal and peak glycolytic activity. Compared with control, those receiving everolimus demonstrated increased lung function through forced expiratory volume in 1 s (FEV1) measurements, suggesting that everolimus may mitigate inflammation contributing to lung damage.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Everolimo/farmacologia , Everolimo/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Mycobacterium tuberculosis/metabolismo , Imunidade
18.
Biomedicines ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761009

RESUMO

Tuberculosis meningitis (TBM) is a result of the invasion of the meninges with the bacilli of Mycobacterium tuberculosis (Mtb), leading to inflammation of the meninges around the brain or spinal cord. Oxidative stress occurs when the body's cells become overwhelmed with free radicals, particularly reactive oxygen species (ROS). ROS plays a significant role in the pathogenesis of TBM due to their toxic nature, resulting in impairment of the body's ability to fight off infection. ROS damages the endothelial cells and impairs the defense mechanisms of the blood-brain barrier (BBB), which contributes to CNS susceptibility to the bacteria causing TBM. Diabetes mellitus (DM) is a common condition that is characterized by the impairment of the hormone insulin, which is responsible for modulating blood glucose levels. The increased availability of glucose in individuals with diabetes results in increased cellular activity and metabolism, leading to heightened ROS production and, in turn, increased susceptibility to TBM. In this review, we summarize our current understanding of oxidative stress and its role in both TBM and DM. We further discuss how increased oxidative stress in DM can contribute to the likelihood of developing TBM and potential therapeutic approaches that may be of therapeutic value.

19.
Front Biosci (Elite Ed) ; 15(3): 15, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37743234

RESUMO

BACKGROUND: Extrapulmonary tuberculosis (EPTB) accounts for a fifth of all Mycobacterium tuberculosis (M. tb) infections worldwide. The rise of multidrug resistance in M. tb alongside the hepatotoxicity associated with antibiotics presents challenges in managing and treating tuberculosis (TB), thereby prompting a need for new therapeutic approaches. Administration of liposomal glutathione (L-GSH) has previously been shown to lower oxidative stress, enhance a granulomatous response, and reduce the burden of M. tb in the lungs of M. tb-infected mice. However, the effects of L-GSH supplementation during active EPTB in the liver and spleen have yet to be explored. METHODS: In this study, we evaluated hepatic glutathione (GSH) and malondialdehyde (MDA) levels, and the cytokine profiles of untreated and L-GSH-treated M. tb-infected wild type (WT) mice. Additionally, the hepatic and splenic M. tb burdens and tissue pathologies were also assessed. RESULTS: L-GSH supplementation increased total hepatic levels and reduced GSH. A decrease in the levels of MDA, oxidized GSH, and interleukin (IL)-6 was also detected following L-GSH treatment. Furthermore, L-GSH supplementation was observed to increase interferon-gamma (IFN-γ) and tumor necrosis factor (TNF)-α production and decrease IL-10 levels. M. tb survival was significantly reduced in the liver and spleen following L-GSH supplementation. L-GSH treatment also provided a host-protective effect in the liver and spleen of M. tb-infected mice. CONCLUSIONS: Overall, L-GSH supplementation elevated the levels of total and reduced forms of GSH in the liver and reduced the burden of M. tb by decreasing oxidative stress, enhancing the production of immunosupportive cytokines, and reducing the levels of immunosuppressive cytokines. These observed benefits highlight the potential of L-GSH supplementation during active EPTB and provide insight into novel therapeutic interventions against M. tb infections.


Assuntos
Baço , Tuberculose Extrapulmonar , Animais , Camundongos , Fígado , Citocinas , Glutationa , Suplementos Nutricionais
20.
Pathogens ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624017

RESUMO

Mycobacterium avium (M. avium), a type of nontuberculous mycobacteria (NTM), poses a risk for pulmonary infections and disseminated infections in immunocompromised individuals. Conventional treatment consists of a 12-month regimen of the first-line antibiotics rifampicin and azithromycin. However, the treatment duration and low antibiotic tolerability present challenges in the treatment of M. avium infection. Furthermore, the emergence of multidrug-resistant mycobacterium strains prompts a need for novel treatments against M. avium infection. This study aims to test the efficacy of a novel antimicrobial peptide, cyclic [R4W4], alongside the first-line antibiotics azithromycin and rifampicin in reducing M. avium survival. Colony-forming unit (CFU) counts were assessed after treating M. avium cultures with varying concentrations of cyclic [R4W4] alone or in conjunction with azithromycin or rifampicin 3 h and 4 days post-treatment. M. avium growth was significantly reduced 4 days after cyclic [R4W4] single treatment. Additionally, cyclic [R4W4]-azithromycin and cyclic [R4W4]-rifampicin combination treatments at specific concentrations significantly reduced M. avium survival 3 h and 4 days post-treatment compared with single antibiotic treatment alone. These findings demonstrate cyclic [R4W4] as a potent treatment method against M. avium and provide insight into novel therapeutic approaches against mycobacterium infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...