Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 940, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375606

RESUMO

BACKGROUND: Two strains of the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae) present a differential parasitism success on the host, Sesamia nonagrioides (Lepidoptera: Noctuidae). One is virulent on both permissive and resistant host populations, and the other only on the permissive host. This interaction provides a very interesting frame for studying virulence factors. Here, we used a combination of comparative transcriptomic and proteomic analyses to unravel the molecular basis underlying virulence differences between the strains. RESULTS: First, we report that virulence genes are mostly expressed during the pupal stage 24 h before adult emergence of the parasitoid. Especially, 55 proviral genes are up-regulated at this stage, while their expression is only expected in the host. Parasitoid gene expression in the host increases from 24 to 96 h post-parasitism, revealing the expression of 54 proviral genes at early parasitism stage and the active participation of teratocytes to the parasitism success at the late stage. Secondly, comparison between strains reveals differences in venom composition, with 12 proteins showing differential abundance. Proviral expression in the host displays a strong temporal variability, along with differential patterns between strains. Notably, a subset of proviral genes including protein-tyrosine phosphatases is specifically over-expressed in the resistant host parasitized by the less virulent strain, 24 h after parasitism. This result particularly hints at host modulation of proviral expression. Combining proteomic and transcriptomic data at various stages, we identified 8 candidate genes to support the difference in reproductive success of the two strains, one proviral and 7 venom genes, one of them being also produced within the host by the teratocytes. CONCLUSIONS: This study sheds light on the temporal expression of virulence factors of Cotesia typhae, both in the host and in the parasitoid. It also identifies potential molecular candidates driving differences in parasitism success between two strains. Together, those findings provide a path for further exploration of virulence mechanisms in parasitoid wasps, and offer insights into host-parasitoid coevolution.


Assuntos
Proteômica , Transcriptoma , Vespas , Animais , Vespas/patogenicidade , Vespas/genética , Virulência/genética , Interações Hospedeiro-Parasita/genética , Perfilação da Expressão Gênica , Proteoma , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Venenos de Vespas/genética , Venenos de Vespas/metabolismo
3.
J Insect Physiol ; 155: 104646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705455

RESUMO

Cotesia typhae is an eastern African endoparasitoid braconid wasp that targets the larval stage of the lepidopteran stem borer, Sesamia nonagrioides, a maize crop pest in Europe. The French host population is partially resistant to the Makindu strain of the wasp, allowing its development in only 40% of the cases. Resistant larvae can encapsulate the parasitoid and survive the infection. This interaction provides a very interesting frame for investigating the impact of parasitism on host cellular resistance. We characterized the parasitoid ovolarval development in a permissive host and studied the encapsulation process in a resistant host by dissection and histological sectioning compared to that of inert chromatography beads. We measured the total hemocyte count in parasitized and bead-injected larvae over time to monitor the magnitude of the immune reaction. Our results show that parasitism of resistant hosts delayed encapsulation but did not affect immune abilities towards inert beads. Moreover, while bead injection increased total hemocyte count, it remained constant in resistant and permissive larvae. We conclude that while Cotesia spp virulence factors are known to impair the host immune system, our results suggest that passive evasion could also occur.


Assuntos
Hemócitos , Interações Hospedeiro-Parasita , Larva , Mariposas , Vespas , Animais , Vespas/fisiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/imunologia , Larva/fisiologia , Mariposas/parasitologia , Mariposas/imunologia , Mariposas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...