Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279649

RESUMO

Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39321868

RESUMO

OBJECTIVE: To analyze the effectiveness of the current genetic testing guidelines for patients with thoracic aortic aneurysms (TAA). METHODS: We evaluated thoracic aortic disease (TAD) genetic tests from 2012 to 2023 in patients aged 18 and older with a thoracic aorta diameter greater than 4 cm. Mutation rates were compared by ACC/AHA testing criteria met by patients: age under 60, syndromic features of connective tissue diseases (CTD), family history, or none. Results were classified as pathogenic, variants of uncertain significance (VUS) or negative. Genes tested were analyzed in two categories: primary (strongly associated with heritable diseases) or secondary (less strongly associated). RESULTS: 1034 patients were included: 42.4% aged under 60, 19.1% with syndromic features of CTD, 41.8% with family history, and 30.7% meeting no criteria. Overall, 3.97% had pathogenic mutations and 27.27% had VUS. Mutation rates were highest in patients with syndromic features of CTD (13.2%), followed by patients aged under 60 (5.48%), family history (4.63%), and no criteria met (2.21%). Primary genes had pathogenic mutation rates of 3.29% and VUS rates of 12.19%. Secondary genes had lower pathogenic rates (0.68%) but higher VUS (17.5%). Mutation rates in primary genes peaked at 22% in patients meeting all criteria, whereas those under 60 years without family history or syndromic features of CTD had the lowest rate (0.54%). CONCLUSIONS: Refining genetic testing guidelines to incorporate multiple patient criteria could enhance risk stratification and support informed decision-making in TAD genetic testing. Limiting testing to genes strongly associated with TAD could lower VUS rates.

4.
Cancer Res ; 84(15): 2533-2548, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832928

RESUMO

Breast cancer includes several subtypes with distinct characteristic biological, pathologic, and clinical features. Elucidating subtype-specific genetic etiology could provide insights into the heterogeneity of breast cancer to facilitate the development of improved prevention and treatment approaches. In this study, we conducted pairwise case-case comparisons among five breast cancer subtypes by applying a case-case genome-wide association study (CC-GWAS) approach to summary statistics data of the Breast Cancer Association Consortium. The approach identified 13 statistically significant loci and eight suggestive loci, the majority of which were identified from comparisons between triple-negative breast cancer (TNBC) and luminal A breast cancer. Associations of lead variants in 12 loci remained statistically significant after accounting for previously reported breast cancer susceptibility variants, among which, two were genome-wide significant. Fine mapping implicated putative functional/causal variants and risk genes at several loci, e.g., 3q26.31/TNFSF10, 8q22.3/NACAP1/GRHL2, and 8q23.3/LINC00536/TRPS1, for TNBC as compared with luminal cancer. Functional investigation further identified rs16867605 at 8q22.3 as a SNP that modulates the enhancer activity of GRHL2. Subtype-informative polygenic risk scores (PRS) were derived, and patients with a high subtype-informative PRS had an up to two-fold increased risk of being diagnosed with TNBC instead of luminal cancers. The CC-GWAS PRS remained statistically significant after adjusting for TNBC PRS derived from traditional case-control GWAS in The Cancer Genome Atlas and the African Ancestry Breast Cancer Genetic Consortium. The CC-GWAS PRS was also associated with overall survival and disease-specific survival among patients with breast cancer. Overall, these findings have advanced our understanding of the genetic etiology of breast cancer subtypes, particularly for TNBC. Significance: The discovery of subtype-informative genetic risk variants for breast cancer advances our understanding of the etiologic heterogeneity of breast cancer, which could accelerate the identification of targets and personalized strategies for prevention and treatment.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Estudos de Casos e Controles , Fatores de Risco
5.
Prostate ; 84(13): 1179-1188, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38899408

RESUMO

BACKGROUND: Chronic infection and inflammation have been linked to the development of prostate cancer. Dysbiosis of the oral and gut microbiomes and subsequent microbial translocation can lead to pathogenic prostate infections. Microbial-produced metabolites have also been associated with signaling pathways that promote prostate cancer development. A comprehensive discussion on the mechanisms of microbiome infection and the prostate microenvironment is essential to understand prostate carcinogenesis. METHODS: Published studies were used from the National Center for Biotechnology Information (NCBI) database to conduct a narrative review. No restrictions were applied in the selection of articles. RESULTS: Microbiome-derived short-chain fatty acids (SCFAs) have been found to upregulate multiple signaling pathways, including MAPK and PI3K, through IGF-1 signaling and M2 macrophage polarization. SCFAs can also upregulate Toll-like receptors, leading to chronic inflammation and the creation of a pro-prostate cancer environment. Dysbiosis of oral microbiota has been correlated with prostate infection and inflammation. Additionally, pathogenic microbiomes associated with urinary tract infections have shown a link to prostate cancer, with vesicoureteral reflux potentially contributing to prostate infection. CONCLUSIONS: This review offers a comprehensive understanding of the impact of microbial infections linked to intraprostatic inflammation as a causative factor for prostate cancer. Further studies involving the manipulation of the microbiome and its produced metabolites may provide a more complete understanding of the microenvironmental mechanisms that promote prostate carcinogenesis.


Assuntos
Microbiota , Neoplasias da Próstata , Neoplasias da Próstata/microbiologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Humanos , Masculino , Microbiota/fisiologia , Prostatite/microbiologia , Prostatite/metabolismo , Prostatite/patologia , Prostatite/imunologia , Inflamação/microbiologia , Inflamação/metabolismo , Disbiose/microbiologia , Próstata/microbiologia , Próstata/patologia , Próstata/metabolismo , Animais , Microambiente Tumoral
6.
Mol Carcinog ; 63(6): 1051-1063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482990

RESUMO

Men with prostate cancer are at increased risk of developing cognitive decline by the use of second-generation androgen signaling inhibitors. To date, reliable and sensitive biomarkers that could distinguish men at high risk of cognitive dysfunction under androgen deprivation therapy (ADT) have not been characterized. We used high-throughput transcriptional profiling utilizing human prostate cancer cell culture models mimicking ADT, biomarker selection using minimal common oncology data elements-cytoscape, and bioinformatic analyses employing Advaita® iPathwayGuide and DisGeNET for identification of disease-related gene associations. Validation analysis of genes was performed on brain neuronal and glial cells by quantitative real-time polymerase chain reaction assay. Our systematic analysis of androgen deprivation-associated genes involved multiple biological processes, including neuroactive ligand-receptor interaction, axon guidance, cytokine-cytokine receptor interaction, and metabolic and cancer signaling pathways. Genes associated with neuroreceptor ligand interaction, including gamma-aminobutyric acid (GABA) A and B receptors and nuclear core proteins, were identified as top upstream regulators. Functional enrichment and protein-protein interaction network analysis highlighted the role of ligand-gated ion channels (LGICs) and their receptors in cognitive dysfunction. Gene-disease association assigned forgetfulness, intellectual disability, visuospatial deficit, bipolar disorder, and other neurocognitive impairment with upregulation of type-1 angiotensin II receptor, brain-derived neurotrophic factor, GABA type B receptor subunit 2 (GABBR2), GABRA3, GABRA5, GABRB1, glycine receptor beta, glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 1, glutamate ionotropic receptor NMDA type subunit 2D, 5-hydroxytryptamine receptor 1D, interferon beta 1, and nuclear receptor subfamily 3 group C member 1 as top differentially expressed genes. Validation studies of brain glial cells, neurons, and patients on ADT demonstrated the association of these genes with cognitive decline. Our findings highlight LGICs as potential biomarkers for ADT-mediated cognitive decline. Further validation of these biomarkers may lead to future practical clinical use.


Assuntos
Disfunção Cognitiva , Neoplasias da Próstata , Humanos , Masculino , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Canais Iônicos/genética , Canais Iônicos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mapas de Interação de Proteínas
7.
Cancers (Basel) ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38473408

RESUMO

Prostate cancer, the most common cancer among males, has a mortality rate of approximately 29,000 deaths each year in the United States alone [...].

8.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326311

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Proteômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Renais/genética , Cromatina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromossomos Humanos X/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína com Valosina/genética
9.
Small ; 20(24): e2307439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213007

RESUMO

Neuroprosthetics and brain-machine interfaces are immensely beneficial for people with neurological disabilities, and the future generation of neural repair systems will utilize neuromorphic devices for the advantages of energy efficiency and real-time performance abilities. Conventional synaptic devices are not compatible to work in such conditions. The cerebrospinal fluid (CSF) in the central part of the nervous system is composed of 99% water. Therefore, artificial synaptic devices, which are the fundamental component of neuromorphic devices, should resemble biological nerves while being biocompatible, and functional in high-humidity environments with higher functional stability for real-time applications in the human body. In this work, artificial synaptic devices are fabricated based on gelatin-PEDOT: PSS composite as an active material to work more effectively in a highly humid environment (≈90% relative humidity). These devices successfully mimic various synaptic properties by the continuous variation of conductance, like, excitatory/inhibitory post-synaptic current(EPSC/IPSC), paired-pulse facilitation/depression(PPF/PPD), spike-voltage dependent plasticity (SVDP), spike-duration dependent plasticity (SDDP), and spike-rate dependent plasticity (SRDP) in environments at a relative humidity levels of ≈90%.


Assuntos
Umidade , Animais , Sinapses/fisiologia , Humanos , Plasticidade Neuronal/fisiologia , Proteínas/química
10.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254738

RESUMO

The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.

11.
Cancers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067384

RESUMO

The gut microbiome is critical in balancing human health and in influencing the risk of several chronic diseases, including cancer [...].

12.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873234

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

14.
ACS Appl Mater Interfaces ; 15(25): 30580-30590, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317896

RESUMO

The selective and rapid detection of trace amounts of highly toxic chemical warfare agents has become imperative for efficiently using military and civilian defense. Metal-organic frameworks (MOFs) are a class of inorganic-organic hybrid porous material that could be potential next-generation toxic gas sensors. However, the growth of a MOF thin film for efficiently utilizing the material properties for fabricating electronic devices has been challenging. Herein, we report a new approach to efficiently integrate MOF as a receptor through diffusion-induced ingress into the grain boundaries of the pentacene semiconducting film in the place of the most adaptive chemical functionalization method for sensor fabrication. We used bilayer conducting channel-based organic field-effect transistors (OFETs) as a sensing platform comprising CPO-27-Ni as the sensing layer, coated on the pentacene layer, showed a strong response toward sensing of diethyl sulfide, which is one of the stimulants of bis (2-chloroethyl) sulfide, a highly toxic sulfur mustard (HD). Using OFET as a sensing platform, these sensors can be a potential candidate for trace amounts of sulfur mustard detection below 10 ppm in real time as wearable devices for onsite uses.

15.
Cancers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345076

RESUMO

Post-traumatic stress disorder (PTSD) is defined as a mental health disease that has a high probability of developing among individuals who have experienced traumatic events [...].

16.
Mol Carcinog ; 62(9): 1312-1324, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232341

RESUMO

Abiraterone acetate has been clinically approved for the treatment of patients with advanced-stage prostate cancer. It reduces testosterone production by blocking the enzyme cytochrome P450 17 alpha-hydroxylase. Despite improved survival outcomes with abiraterone, almost all patients develop therapeutic resistance and disease recurrence, progressing to a more aggressive and lethal phenotype. Bioinformatics analyses predicted activation of canonical Wnt/ß-catenin and involvement of stem cell plasticity in abiraterone-resistant prostate cancer. Increased expression of androgen receptor (AR) and ß-catenin and their crosstalk causes activation of AR target genes and regulatory networks for which overcoming acquired resistance remains a major challenge. Here we show that co-treatment with abiraterone and ICG001, a ß-catenin inhibitor, overcomes therapeutic resistance and significantly inhibited markers of stem cell and cellular proliferation in abiraterone-resistant prostate cancer cells. Importantly, this combined treatment abrogated the association between AR and ß-catenin; diminished SOX9 expression from the complex more prominently in abiraterone-resistant cells. In addition, combined treatment inhibited tumor growth in an in vivo abiraterone-resistant xenograft model, blocked stemness, migration, invasion, and colony formation ability of cancer cells. This study opens new therapeutic opportunity for advanced-stage castration-resistant prostate cancer patients.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Resistencia a Medicamentos Antineoplásicos , beta Catenina/metabolismo , Recidiva Local de Neoplasia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
17.
Cancer Lett ; 560: 216143, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36958695

RESUMO

Epigenetic modifications regulate critical biological processes that play a pivotal role in the pathogenesis of cancer. Enhancer of Zeste Homolog 2 (EZH2), a subunit of the Polycomb-Repressive Complex 2, catalyzes trimethylation of histone H3 on Lys 27 (H3K27) involved in gene silencing. EZH2 is amplified in human cancers and has roles in regulating several cellular processes, including survival, proliferation, invasion, and self-renewal. Though EZH2 is responsible for gene silencing through its canonical role, it also regulates the transcription of several genes promoting carcinogenesis via its non-canonical role. Constitutive activation of Nuclear Factor-kappaB (NF-κB) plays a crucial role in the development and progression of human malignancies. NF-κB is essential for regulating innate and adaptive immune responses and is one of the most important molecules that increases survival during carcinogenesis. Given the evidence that increased survival and proliferation are essential for tumor development and their association with epigenetic modifications, it seems plausible that EZH2 and NF-κB crosstalk may promote cancer progression. In this review, we expand on how EZH2 and NF-κB regulate cellular responses during cancer and their crosstalk of the canonical and non-canonical roles in a context-dependent manner.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transdução de Sinais , Carcinogênese
18.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672280

RESUMO

Prostate cancer is a complex heterogeneous disease that affects millions of males worldwide. Despite rapid advances in molecular biology and innovation in technology, few biomarkers have been forthcoming in prostate cancer. The currently available biomarkers for the prognosis of prostate cancer are inadequate and face challenges, thus having limited clinical utility. To date, there are a number of prognostic and predictive biomarkers identified for prostate cancer but lack specificity and sensitivity to guide clinical decision making. There is still tremendous scope for specific biomarkers to understand the natural history and complex biology of this heterogeneous disease, and to identify early treatment responses. Accumulative studies indicate that aquaporins (AQPs) a family of membrane water channels may serve as a prognostic biomarker for prostate cancer in monitoring disease advancement. In the present review, we discuss the existing prostate cancer biomarkers, their limitations, and aquaporins as a prospective biomarker of prognostic significance in prostate cancer.

19.
Cancer Drug Resist ; 5(2): 459-471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800367

RESUMO

Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.

20.
Prostate ; 82(14): 1389-1399, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821621

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) is a standard treatment modality for locally advanced, high-risk, and metastatic hormone-sensitive prostate cancer. Long-term ADT treatment likely develops side-effects that include changes in cognition or onset of dementia. However, the molecular understanding of this effect remains elusive. We attempt to establish a link between ADT and changes in cognitive function using patient databases and bioinformatics analyses. METHODS: Gene expression profiling was performed using RNA sequencing data from Alzheimer patient cohort and compared with the data from advanced-stage prostate cancer patients receiving neoadjuvant antiandrogen therapy. Differentially expressed genes (DEGs) were analyzed using the Ingenuity knowledge database. RESULTS: A total of 1952 DEGs in the Alzheimer patient cohort and 101 DEGs were identified in ADT treated prostate cancer patients. Comparing both data sets provided a subset of 33 commonly expressed genes involving cytokine-cytokine signaling with an over representation of cytokine-cytokine receptor interaction, inflammatory cytokines, signaling by interleukins together with alterations in the circulating lymphocyte repertoire, adaptive immune responses, regulation of cytokine production, and changes in T-cell subsets. Additionally, lipopolysaccharide, tumor necrosis factor, and toll-like receptors were identified as upstream transcriptional regulators of these pathways. The most commonly expressed genes viz. IL-17A, CCL2, IL-10, IL-6, IL-1RN, LIF/LIFR were further validated by quantitative RT-PCR exhibited higher expression in antiandrogen treated neuronal, glial, and androgen-responsive prostate cancer cells, compared to no-androgen antagonist treatment. CONCLUSIONS: Our findings suggest that changes in cytokine signaling under the influence of ADT in prostate cancer patients may be linked with cognitive impairment presenting new avenues for diagnostic and therapeutic development in combating brain deficits.


Assuntos
Doença de Alzheimer , Neoplasias da Próstata , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Antagonistas de Androgênios/efeitos adversos , Cognição , Citocinas/genética , Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...