Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Channels (Austin) ; 14(1): 268-286, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32815768

RESUMO

The cardiac voltage-gated sodium channel Nav1.5 conducts the rapid inward sodium current crucial for cardiomyocyte excitability. Loss-of-function mutations in its gene SCN5A are linked to cardiac arrhythmias such as Brugada Syndrome (BrS). Several BrS-associated mutations in the Nav1.5 N-terminal domain (NTD) exert a dominant-negative effect (DNE) on wild-type channel function, for which mechanisms remain poorly understood. We aim to contribute to the understanding of BrS pathophysiology by characterizing three mutations in the Nav1.5 NTD: Y87C-here newly identified-, R104W, and R121W. In addition, we hypothesize that the calcium sensor protein calmodulin is a new NTD binding partner. Recordings of whole-cell sodium currents in TsA-201 cells expressing WT and variant Nav1.5 showed that Y87C and R104W but not R121W exert a DNE on WT channels. Biotinylation assays revealed reduction in fully glycosylated Nav1.5 at the cell surface and in whole-cell lysates. Localization of Nav1.5 WT channel with the ER did not change in the presence of variants, as shown by transfected and stained rat neonatal cardiomyocytes. We demonstrated that calmodulin binds the Nav1.5 NTD using in silico modeling, SPOTS, pull-down, and proximity ligation assays. Calmodulin binding to the R121W variant and to a Nav1.5 construct missing residues 80-105, a predicted calmodulin-binding site, is impaired. In conclusion, we describe the new natural BrS Nav1.5 variant Y87C and present first evidence that calmodulin binds to the Nav1.5 NTD, which seems to be a determinant for the DNE.


Assuntos
Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Western Blotting , Síndrome de Brugada/metabolismo , Calmodulina/genética , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Éxons/genética , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ligação Proteica , Ratos , Adulto Jovem
2.
Circ Arrhythm Electrophysiol ; 13(7): e008241, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32536203

RESUMO

BACKGROUND: Mutations in the gene encoding the cardiac voltage-gated sodium channel Nav1.5 cause various cardiac arrhythmias. This variety may arise from different determinants of Nav1.5 expression between cardiomyocyte domains. At the lateral membrane and T-tubules, Nav1.5 localization and function remain insufficiently characterized. METHODS: We used novel single-molecule localization microscopy and computational modeling to define nanoscale features of Nav1.5 localization and distribution at the lateral membrane, the lateral membrane groove, and T-tubules in cardiomyocytes from wild-type (N=3), dystrophin-deficient (mdx; N=3) mice, and mice expressing C-terminally truncated Nav1.5 (ΔSIV; N=3). We moreover assessed T-tubules sodium current by recording whole-cell sodium currents in control (N=5) and detubulated (N=5) wild-type cardiomyocytes. RESULTS: We show that Nav1.5 organizes as distinct clusters in the groove and T-tubules which density, distribution, and organization partially depend on SIV and dystrophin. We found that overall reduction in Nav1.5 expression in mdx and ΔSIV cells results in a nonuniform redistribution with Nav1.5 being specifically reduced at the groove of ΔSIV and increased in T-tubules of mdx cardiomyocytes. A T-tubules sodium current could, however, not be demonstrated. CONCLUSIONS: Nav1.5 mutations may site-specifically affect Nav1.5 localization and distribution at the lateral membrane and T-tubules, depending on site-specific interacting proteins. Future research efforts should elucidate the functional consequences of this redistribution.


Assuntos
Membrana Celular/metabolismo , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Imagem Individual de Molécula , Animais , Membrana Celular/ultraestrutura , Simulação por Computador , Distrofina/genética , Distrofina/metabolismo , Potenciais da Membrana , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Modelos Cardiovasculares , Miócitos Cardíacos/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Transporte Proteico
3.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438494

RESUMO

Human variants in plakophilin-2 (PKP2) associate with most cases of familial arrhythmogenic cardiomyopathy (ACM). Recent studies show that PKP2 not only maintains intercellular coupling, but also regulates transcription of genes involved in Ca2+ cycling and cardiac rhythm. ACM penetrance is low and it remains uncertain, which genetic and environmental modifiers are crucial for developing the cardiomyopathy. In this study, heterozygous PKP2 knock-out mice (PKP2-Hz) were used to investigate the influence of exercise, pressure overload, and inflammation on a PKP2-related disease progression. In PKP2-Hz mice, protein levels of Ca2+-handling proteins were reduced compared to wildtype (WT). PKP2-Hz hearts exposed to voluntary exercise training showed right ventricular lateral connexin43 expression, right ventricular conduction slowing, and a higher susceptibility towards arrhythmias. Pressure overload increased levels of fibrosis in PKP2-Hz hearts, without affecting the susceptibility towards arrhythmias. Experimental autoimmune myocarditis caused more severe subepicardial fibrosis, cell death, and inflammatory infiltrates in PKP2-Hz hearts than in WT. To conclude, PKP2 haploinsufficiency in the murine heart modulates the cardiac response to environmental modifiers via different mechanisms. Exercise upon PKP2 deficiency induces a pro-arrhythmic cardiac remodeling, likely based on impaired Ca2+ cycling and electrical conduction, versus structural remodeling. Pathophysiological stimuli mainly exaggerate the fibrotic and inflammatory response.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/metabolismo , Haploinsuficiência/fisiologia , Doença Autoimune do Sistema Nervoso Experimental/etiologia , Doença Autoimune do Sistema Nervoso Experimental/metabolismo , Placofilinas/metabolismo , Animais , Western Blotting , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Ecocardiografia , Eletrocardiografia , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Haploinsuficiência/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Autoimune do Sistema Nervoso Experimental/patologia , Placofilinas/genética , Reação em Cadeia da Polimerase
4.
Sci Data ; 5: 180216, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30299437

RESUMO

This corrects the article DOI: 10.1038/sdata.2018.170.

5.
Sci Data ; 5: 180170, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30129933

RESUMO

Mice are used universally as model organisms for studying heart physiology, and a plethora of genetically modified mouse models exist to study cardiac disease. Transcriptomic data for whole-heart tissue are available, but not yet for isolated ventricular cardiomyocytes. Our lab therefore collected comprehensive RNA-seq data from wildtype murine ventricular cardiomyocytes as well as from knockout models of the ion channel regulators CASK, dystrophin, and SAP97. We also elucidate ion channel expression from wild-type cells to help forward the debate about which ion channels are expressed in cardiomyocytes. Researchers studying the heart, and especially cardiac arrhythmias, may benefit from these cardiomyocyte-specific transcriptomic data to assess expression of genes of interest.

6.
Cardiovasc Res ; 113(3): 259-275, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069669

RESUMO

This review presents an extensively integrated model of the cardiac intercalated disc (ID), a highly orchestrated structure that connects adjacent cardiomyocytes. Classically, three main structures are distinguished: gap junctions (GJs) metabolically and electrically connect cytoplasm of adjacent cardiomyocytes; adherens junctions (AJs) connect the actin cytoskeleton of adjacent cells; and desmosomes function as cell anchors and connect intermediate filaments. Furthermore, ion channels reside in the ID. Mutations in ID proteins have been associated with cardiac arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. However, rather than being independent, all ID components work together intensively by multifunctional proteins such as ZO-1, Ankyrin G, and ß-catenin, integrating mechanical and electrical functions. GJs form a plaque surrounded by the perinexus in which free connexons reside; the connexome integrates NaV channels, the desmosome and GJs; and the area composita hosts AJs and desmosomes, also integrated as adhering junctions. Furthermore, the transitional junction connects sarcomeres to the plasma membrane. Lastly, this review integrates all these findings in comprehensible figures, illustrating the interdependencies of ID proteins.


Assuntos
Arritmias Cardíacas/metabolismo , Comunicação Celular , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Desmossomos/metabolismo , Desmossomos/patologia , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Predisposição Genética para Doença , Humanos , Junções Intercelulares/genética , Junções Intercelulares/patologia , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/genética , Mutação , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...