Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124203, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830529

RESUMO

Glyphosate-based weed killers such as Roundup have been implicated in detrimental effects on single- and multicellular eukaryotic model organism health and longevity. However, the mode(s) of action for these effects are currently unknown. In this study, we investigate the impact of exposure to Roundup on two model organisms: Saccharomyces cerevisiae and Caenorhabditis elegans and test the hypothesis that exposure to Roundup decreases transcription fidelity. Population growth assays and motility assays were performed in order to determine the phenotypic effects of Roundup exposure. We also used Rolling-Circle Amplification RNA sequencing to quantify the impact of exposure to Roundup on transcription fidelity in these two model organisms. Our results show that exposure to the glyphosate-based herbicide Roundup increases mortality, reduces reproduction, and increases transcription error rates in C. elegans and S. cerevisiae. We suggest that these effects may be due in part to the involvement of inflammation and oxidative stress, conditions which may also contribute to increases in transcription error rates.

2.
Geroscience ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570396

RESUMO

Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), MTZ, a newly employed ETC complex I inhibitor, exhibited higher cytotoxicity against cancer cell lines compared to certain non-cancer cell lines. Interestingly, 8-OAc demonstrated greater selectivity for cancer cells when compared to both MTZ and Rote, which has promising potential for anticancer therapeutic development. Furthermore, in vivo experiments with these small molecules utilizing a C. elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. We also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilizes the transcription factors ATFS-1 and HSF1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.

4.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38077060

RESUMO

Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), a widely used ETC complex I inhibitor, these two molecules showed cytotoxicity to cancer cells but strikingly demonstrate a lack of toxicity to non-cancer cells, a highly beneficial feature in the development of anti-cancer therapeutics. Furthermore, in vivo experiments with these small molecules utilizing C.elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. Interestingly, we also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilize the transcription factors ATFS-1 and HSF-1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF-1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.

5.
Proc Natl Acad Sci U S A ; 120(51): e2306767120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100415

RESUMO

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterized by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here, we used electron cryo-microscopy to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in three Kii cases and tau filaments with the corticobasal degeneration fold in one Kii case. We identified a new Type III CTE tau filament, where protofilaments pack against each other in an antiparallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.


Assuntos
Esclerose Lateral Amiotrófica , Encefalopatia Traumática Crônica , Demência , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Tauopatias , Humanos , Esclerose Lateral Amiotrófica/complicações , Demência/etiologia , Transtornos Parkinsonianos/complicações , Japão , Proteínas tau
6.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162924

RESUMO

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterised by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in two Kii cases. We also identified a novel Type III CTE tau filament, where protofilaments pack against each other in an anti-parallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.

7.
Nat Commun ; 14(1): 1547, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941254

RESUMO

Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , Humanos , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(5): e2210038120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696440

RESUMO

To determine the error rate of transcription in human cells, we analyzed the transcriptome of H1 human embryonic stem cells with a circle-sequencing approach that allows for high-fidelity sequencing of the transcriptome. These experiments identified approximately 100,000 errors distributed over every major RNA species in human cells. Our results indicate that different RNA species display different error rates, suggesting that human cells prioritize the fidelity of some RNAs over others. Cross-referencing the errors that we detected with various genetic and epigenetic features of the human genome revealed that the in vivo error rate in human cells changes along the length of a transcript and is further modified by genetic context, repetitive elements, epigenetic markers, and the speed of transcription. Our experiments further suggest that BRCA1, a DNA repair protein implicated in breast cancer, has a previously unknown role in the suppression of transcription errors. Finally, we analyzed the distribution of transcription errors in multiple tissues of a new mouse model and found that they occur preferentially in neurons, compared to other cell types. These observations lend additional weight to the idea that transcription errors play a key role in the progression of various neurological disorders, including Alzheimer's disease.


Assuntos
RNA , Transcrição Gênica , Animais , Camundongos , Humanos , RNA/genética , Transcriptoma , Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
9.
J Mol Biol ; 435(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708190

RESUMO

Cytidine (C) to Uridine (U) RNA editing is a post-transcription modification that is involved in diverse biological processes. APOBEC1 (A1) catalyzes the conversion of C-to-U in RNA, which is important in regulating cholesterol metabolism through its editing activity on ApoB mRNA. However, A1 requires a cofactor to form an "editosome" for RNA editing activity. A1CF and RBM47, both RNA-binding proteins, have been identified as cofactors that pair with A1 to form editosomes and edit ApoB mRNA and other cellular RNAs. SYNCRIP is another RNA-binding protein that has been reported as a potential regulator of A1, although it is not directly involved in A1 RNA editing activity. Here, we describe the identification and characterization of a novel cofactor, RBM46 (RNA-Binding-Motif-protein-46), that can facilitate A1 to perform C-to-U editing on ApoB mRNA. Additionally, using the low-error circular RNA sequencing technique, we identified novel cellular RNA targets for the A1/RBM46 editosome. Our findings provide further insight into the complex regulatory network of RNA editing and the potential new function of A1 with its cofactors.


Assuntos
Desaminase APOBEC-1 , Edição de RNA , Proteínas de Ligação a RNA , Uridina , Humanos , Desaminase APOBEC-1/metabolismo , Desaminase APOBEC-1/genética , Apolipoproteínas B/metabolismo , Apolipoproteínas B/genética , Citidina/metabolismo , Citidina/genética , Células HEK293 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Uridina/metabolismo , Uridina/genética
10.
Acta Neuropathol ; 140(3): 415, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632518

RESUMO

In the original article, the panels "Brain organoids" and "Transgenics" were included in Fig. 5 without permission.

11.
Exp Gerontol ; 125: 110675, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344454

RESUMO

Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in a variety of age-related neurodegenerative diseases, including age-related hearing loss (AHL). In the current study, we investigated the roles of mtDNA deletions and point mutations in AHL in mitochondrial mutator mice (Polgmut/mut) that were backcrossed onto CBA/CaJ mice, a well-established model of late-onset AHL. mtDNA deletions accumulated significantly with age in the inner ears of Polgmut/mut mice, while there were no differences in mtDNA deletion frequencies in the inner ears between 5 and 17 months old Polg+/+ mice or 5 months old Polg+/+ and Polgmut/mut mice. mtDNA deletions also accumulated significantly in the inner ears of CBA/CaJ mice during normal aging. In contrast, 5 months old Polgmut/mut mice displayed a 238-fold increase in mtDNA point mutation frequencies in the inner ears compared to age-matched Polg+/+ mice, but there were no differences in mtDNA point mutation frequencies in the inner ears between 5 and 17 months old Polgmut/mut mice. Seventeen-month-old Polgmut/mut mice also displayed early-onset severe hearing loss associated with a significant reduction in neural output of the cochlea, while age-matched Polg+/+ mice displayed little or no hearing impairment. Consistent with the physiological and mtDNA deletion test result, 17-month-old Polgmut/mut mice displayed a profound loss of spiral ganglion neurons in the cochlea. Thus, our data suggest that a higher burden of mtDNA point mutations from a young age and age-related accumulation of mtDNA deletions likely contribute to early-onset AHL in mitochondrial mutator mice.


Assuntos
DNA Polimerase gama/genética , DNA Mitocondrial/química , Presbiacusia/genética , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação Puntual , Presbiacusia/patologia , Deleção de Sequência , Gânglio Espiral da Cóclea/patologia
12.
Bio Protoc ; 9(13): e3288, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654802

RESUMO

Mitochondria generate 90% of the energy required to sustain life. As a result, loss of mitochondrial function compromises almost every facet of human physiology. Accordingly, most mitochondrial diseases tend to present themselves as complex, multi-systemic disorders that can be difficult to diagnose. Depending on the severity of the mitochondrial dysfunction, the pathology can range from mild discomfort to severe epilepsy, blindness and paralysis. To develop therapies to these diseases, it will be important to optimize experimental techniques that can reliably quantify mitochondrial function, particularly in live cells or intact organisms. Here, we describe how a Seahorse XF24 Analyzer can be used to measure both basal and maximal respiration in the nematode Caenorhabditis elegans, and how this data can be interpreted to evaluate mitochondrial function.

13.
Cell Metab ; 29(1): 78-90.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30174309

RESUMO

Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease.


Assuntos
Cardiomiopatias/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Mutação
14.
J Vis Exp ; (139)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30272673

RESUMO

Accurate transcription is required for the faithful expression of genetic information. Surprisingly though, little is known about the mechanisms that control the fidelity of transcription. To fill this gap in scientific knowledge, we recently optimized the circle-sequencing assay to detect transcription errors throughout the transcriptome of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. This protocol will provide researchers with a powerful new tool to map the landscape of transcription errors in eukaryotic cells so that the mechanisms that control the fidelity of transcription can be elucidated in unprecedented detail.


Assuntos
Células Eucarióticas/metabolismo , Genômica/métodos , Animais , Transcriptoma
15.
Acta Neuropathol ; 135(6): 811-826, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705908

RESUMO

The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.


Assuntos
Envelhecimento/genética , Mutação , Degeneração Neural/genética , Doenças Neurodegenerativas/genética , Animais , Humanos
16.
Cell Rep ; 22(12): 3115-3125, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562168

RESUMO

Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C. elegans, an animal model that can rapidly be screened for genes and biological pathways that reduce mitochondrial pathology. These worms recapitulate all the major hallmarks of mtDNA disease in humans, including increased mtDNA instability, loss of respiration, reduced neuromuscular function, and a shortened lifespan. We found that these phenotypes could be rescued by intervening in numerous biological pathways, including IGF-1/insulin signaling, mitophagy, and the mitochondrial unfolded protein response, suggesting that it may be possible to ameliorate mtDNA disease through multiple molecular mechanisms.


Assuntos
Caenorhabditis elegans/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Animais , Progressão da Doença , Camundongos , Modelos Animais
17.
Sci Adv ; 3(10): e1701484, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29062891

RESUMO

Accurate transcription is required for the faithful expression of genetic information. To understand the molecular mechanisms that control the fidelity of transcription, we used novel sequencing technology to provide the first comprehensive analysis of the fidelity of transcription in eukaryotic cells. Our results demonstrate that transcription errors can occur in any gene, at any location, and affect every aspect of protein structure and function. In addition, we show that multiple proteins safeguard the fidelity of transcription and provide evidence suggesting that errors that evade these layers of RNA quality control profoundly affect the physiology of living cells. Together, these observations demonstrate that there is an inherent limit to the faithful expression of the genome and suggest that the impact of mutagenesis on cellular health and fitness is substantially greater than currently appreciated.


Assuntos
Células Eucarióticas/metabolismo , Mutagênese , Transcrição Gênica , Regiões 3' não Traduzidas , Biologia Computacional/métodos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Perfilação da Expressão Gênica , Mutação , Taxa de Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Subunidades Proteicas , Transcriptoma , Leveduras/genética , Leveduras/metabolismo
18.
PLoS One ; 12(2): e0171159, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158260

RESUMO

Mitochondrial DNA (mtDNA) mutations are thought to have a causative role in age-related pathologies. We have shown previously that mitochondrial mutator mice (PolgD257A/D257A), harboring a proofreading-deficient version of the mtDNA polymerase gamma (POLG), accumulate mtDNA mutations in multiple tissues and display several features of accelerated aging. Calorie restriction (CR) is known to delay the onset of age-related diseases and to extend the lifespan of a variety of species, including rodents. In the current study we investigated the effects of CR on the lifespan and healthspan of mitochondrial mutator mice. Long-term CR did not increase the median or maximum lifespan of PolgD257A/D257A mice. Furthermore, CR did not reduce mtDNA deletions in the heart and muscle, accelerated sarcopenia, testicular atrophy, nor improve the alterations in cardiac parameters that are present in aged mitochondrial mutator mice. Therefore, our findings suggest that accumulation of mtDNA mutations may interfere with the beneficial action of CR in aging retardation.


Assuntos
Restrição Calórica , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , DNA Polimerase Dirigida por DNA/genética , Ecocardiografia , Estimativa de Kaplan-Meier , Masculino , Camundongos , Músculo Esquelético/metabolismo , Mutação/genética , Tamanho do Órgão/genética , Tamanho do Órgão/fisiologia , Testículo/metabolismo
19.
Curr Opin Genet Dev ; 38: 68-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27235806

RESUMO

Over the last decade, countless discoveries have been made that have expanded our knowledge of mitochondrial biology, and more often than not, these discoveries provided fascinating new insights into the etiology of human disease. For example, advances in mitochondrial genetics exposed the role of mitochondrial mutations in cancer progression, and the discovery of mitophagy highlighted the role of mitochondrial quality control in Parkinson's disease. Additional discoveries underscored the importance of the mTor pathway in aging and disease, and more recently, the mitochondrial unfolded protein response was implicated in the regulation of mammalian lifespan. Some of the most fundamental discoveries though, were made in the context of mitochondrial fusion and fission. The balance between these two opposing forces shapes the mitochondrial population in our cells, and influences mitochondrial function at every level. Here, we highlight the basic biology that underlies mitochondrial fusion and fission, explain how these processes promote human health by solving a problem that is innate to multifarious organelles, and make a novel prediction: that fusion and fission are intimately linked to mitochondrial protein quality control.


Assuntos
Envelhecimento/genética , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/biossíntese , Doença de Parkinson/genética , Envelhecimento/patologia , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Doença de Parkinson/patologia , Serina-Treonina Quinases TOR/genética , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...