Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38744282

RESUMO

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Assuntos
Blastômeros , Linhagem da Célula , Embrião de Mamíferos , Feminino , Humanos , Blastômeros/citologia , Blastômeros/metabolismo , Divisão Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Masculino , Animais , Camundongos
3.
Nat Comput Sci ; 4(4): 299-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594592

RESUMO

The three-dimensional (3D) organization of cells determines tissue function and integrity, and changes markedly in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, high computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, an efficient open-source program to simulate large tissues in three dimensions with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform mechanical properties, as found in polarized epithelia. Spheroids, vesicles, sheets, tubes and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at a great level of detail.


Assuntos
Polaridade Celular , Simulação por Computador , Modelos Biológicos , Fenômenos Biomecânicos/fisiologia , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Células Epiteliais/fisiologia , Células Epiteliais/citologia , Matriz Extracelular/fisiologia , Matriz Extracelular/química , Imageamento Tridimensional/métodos , Software
5.
Cell Rep ; 42(12): 113526, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060445

RESUMO

During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development.


Assuntos
Néfrons , Ureter , Rim , Transdução de Sinais , Epitélio , Morfogênese , Mesoderma
6.
iScience ; 26(10): 107880, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810247

RESUMO

Robust embryonic development requires pattern formation with high spatial accuracy. In epithelial tissues that are patterned by morphogen gradients, the emerging patterns achieve levels of precision that have recently been explained by a simple one-dimensional reaction-diffusion model with kinetic noise. Here, we show that patterning precision is even greater if transverse diffusion effects are at play in such tissues. The positional error, a measure for spatial patterning accuracy, decreases in wider tissues but then saturates beyond a width of about ten cells. This demonstrates that the precision of gradient-based patterning in two- or higher-dimensional systems can be even greater than predicted by 1D models, and further attests to the potential of noisy morphogen gradients for high-precision tissue patterning.

7.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37249125

RESUMO

Tissue patterning during embryonic development is remarkably precise. Here, we numerically determine the impact of the cell diameter, gradient length and the morphogen source on the variability of morphogen gradients. We show that the positional error increases with the gradient length relative to the size of the morphogen source, and with the square root of the cell diameter and the readout position. We provide theoretical explanations for these relationships, and show that they enable high patterning precision over developmental time for readouts that scale with expanding tissue domains, as observed in the Drosophila wing disc. Our analysis suggests that epithelial tissues generally achieve higher patterning precision with small cross-sectional cell areas. An extensive survey of measured apical cell areas shows that they are indeed small in developing tissues that are patterned by morphogen gradients. Enhanced precision may thus have led to the emergence of pseudostratification in epithelia, a phenomenon for which the evolutionary benefit had so far remained elusive.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Estudos Transversais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário , Tamanho Celular , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Drosophila melanogaster/genética
8.
Elife ; 122023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37102505

RESUMO

Morphogen gradients can instruct cells about their position in a patterned tissue. Non-linear morphogen decay has been suggested to increase gradient precision by reducing the sensitivity to variability in the morphogen source. Here, we use cell-based simulations to quantitatively compare the positional error of gradients for linear and non-linear morphogen decay. While we confirm that non-linear decay reduces the positional error close to the source, the reduction is very small for physiological noise levels. Far from the source, the positional error is much larger for non-linear decay in tissues that pose a flux barrier to the morphogen at the boundary. In light of this new data, a physiological role of morphogen decay dynamics in patterning precision appears unlikely.


Assuntos
Padronização Corporal , Modelos Biológicos , Padronização Corporal/fisiologia
9.
Phys Rev E ; 108(6-2): 065003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243471

RESUMO

Orthotropic shell structures are ubiquitous in biology and engineering, from bacterial cell walls to reinforced domes. We present a rescaling transformation that maps an orthotropic shallow shell to an isotropic one with a different local geometry. The mapping is applicable to any shell section for which the material orthotropy directions match the principal curvature directions, assuming the commonly used Huber form for the orthotropic shear modulus. Using the rescaling transformation, we derive exact expressions for the buckling pressure as well as the linear indentation response of orthotropic cylinders and general ellipsoids of revolution, which we verify against numerical simulations. Our analysis disentangles the separate contributions of geometric and material anisotropy to shell rigidity. In particular, we identify the geometric mean of orthotropic elastic constants as the key quantifier of material stiffness, playing a role akin to the Gaussian curvature which captures the geometric stiffness contribution. Besides providing insights into the mechanical response of orthotropic shells, our work rigorously establishes the validity of isotropic approximations to orthotropic shells and also identifies situations in which these approximations might fail.

10.
Proc Natl Acad Sci U S A ; 119(20): e2117075119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561223

RESUMO

Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.


Assuntos
Tubo Neural , Neurulação , Animais , Ectoderma/embriologia , Humanos , Camundongos , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação/fisiologia , Notocorda/embriologia
11.
Curr Opin Genet Dev ; 75: 101916, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605527

RESUMO

Despite molecular noise and genetic differences between individuals, developmental outcomes are remarkably constant. Decades of research has focused on the underlying mechanisms that ensure this precision and robustness. Recent quantifications of chemical gradients and epithelial cell shapes provide novel insights into the basis of precise development. In this review, we argue that these two aspects may be linked in epithelial morphogenesis.


Assuntos
Padronização Corporal , Modelos Biológicos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Morfogênese/genética , Transdução de Sinais/genética
12.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254257

RESUMO

During colony growth, complex interactions regulate the bacterial orientation, leading to the formation of large-scale ordered structures, including topological defects, microdomains, and branches. These structures may benefit bacterial strains, providing invasive advantages during colonization. Active matter dynamics of growing colonies drives the emergence of these ordered structures. However, additional biomechanical factors also play a significant role during this process. Here, we show that the velocity profile of growing colonies creates strong radial orientation during inward growth when crowded populations invade a closed area. During this process, growth geometry sets virtual confinement and dictates the velocity profile. Herein, flow-induced alignment and torque balance on the rod-shaped bacteria result in a new stable orientational equilibrium in the radial direction. Our analysis revealed that the dynamics of these radially oriented structures, also known as aster defects, depend on bacterial length and can promote the survival of the longest bacteria around localized nutritional hotspots. The present results indicate a new mechanism underlying structural order and provide mechanistic insights into the dynamics of bacterial growth on complex surfaces.


Assuntos
Bactérias , Modelos Biológicos
13.
Nat Commun ; 13(1): 1145, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241686

RESUMO

Morphogen gradients encode positional information during development. How high patterning precision is achieved despite natural variation in both the morphogen gradients and in the readout process, is still largely elusive. Here, we show that the positional error of gradients in the mouse neural tube has previously been overestimated, and that the reported accuracy of the central progenitor domain boundaries in the mouse neural tube can be achieved with a single gradient, rather than requiring the simultaneous readout of opposing gradients. Consistently and independently, numerical simulations based on measured molecular noise levels likewise result in lower gradient variabilities than reported. Finally, we show that the patterning mechanism yields progenitor cell numbers with even greater precision than boundary positions, as gradient amplitude changes do not affect interior progenitor domain sizes. We conclude that single gradients can yield the observed developmental precision, which provides prospects for tissue engineering.


Assuntos
Padronização Corporal , Tubo Neural , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Modelos Biológicos
14.
Elife ; 102021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34609280

RESUMO

During morphogenesis, epithelial sheets remodel into complex geometries. How cells dynamically organise their contact with neighbouring cells in these tightly packed tissues is poorly understood. We have used light-sheet microscopy of growing mouse embryonic lung explants, three-dimensional cell segmentation, and physical theory to unravel the principles behind 3D cell organisation in growing pseudostratified epithelia. We find that cells have highly irregular 3D shapes and exhibit numerous neighbour intercalations along the apical-basal axis as well as over time. Despite the fluidic nature, the cell packing configurations follow fundamental relationships previously described for apical epithelial layers, that is, Euler's polyhedron formula, Lewis' law, and Aboav-Weaire's law, at all times and across the entire tissue thickness. This arrangement minimises the lateral cell-cell surface energy for a given cross-sectional area variability, generated primarily by the distribution and movement of nuclei. We conclude that the complex 3D cell organisation in growing epithelia emerges from simple physical principles.


Assuntos
Pulmão/embriologia , Animais , Células Epiteliais/citologia , Epitélio/embriologia , Camundongos , Morfogênese
15.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33946098

RESUMO

During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.


Assuntos
Fenômenos Biomecânicos , Rim/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Organogênese , Animais , Biofísica , Forma Celular , Células Epiteliais/citologia , Matriz Extracelular , Feminino , Masculino , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Morfogênese , Pseudópodes
16.
Phys Rev Lett ; 123(5): 058002, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491319

RESUMO

We report on the buckling and subsequent collapse of orthotropic elastic spherical shells under volume and pressure control. Going far beyond what is known for isotropic shells, a rich morphological phase space with three distinct regimes emerges upon variation of shell slenderness and degree of orthotropy. Our extensive numerical simulations are in agreement with experiments using fabricated polymer shells. The shell buckling pathways and corresponding strain energy evolution are shown to depend strongly on material orthotropy. We find surprisingly robust orthotropic structures with strong similarities to stomatocytes and tricolpate pollen grains, suggesting that the shape of several of Nature's collapsed shells could be understood from the viewpoint of material orthotropy.

17.
Nat Commun ; 10(1): 2285, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123251

RESUMO

Growing tissue and bacterial colonies are active matter systems where cell divisions and cellular motion generate active stress. Although they operate in the non-equilibrium regime, these biological systems can form large-scale ordered structures. How mechanical instabilities drive the dynamics of active matter systems and form ordered structures are not well understood. Here, we use chaining Bacillus subtilis, also known as a biofilm, to study the relation between mechanical instabilities and nematic ordering. We find that bacterial biofilms have intrinsic length scales above which a series of mechanical instabilities occur. Localized stress and friction drive buckling and edge instabilities which further create nematically aligned structures and topological defects. We also observe that topological defects control stress distribution and initiate the formation of sporulation sites by creating three-dimensional structures. In this study we propose an alternative active matter platform to study the essential roles of mechanics in growing biological tissue.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes , Microscopia Intravital/métodos , Bacillus subtilis/ultraestrutura , Fenômenos Biomecânicos , Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Estresse Mecânico , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...