RESUMO
Regular wave patterns were created by a 2 kV gallium ion on Si(111) monocrystals at incidence angles between 60° and 80° with respect to the surface normal. The characteristic wavelength and surface roughness of the structured surfaces were determined to be between 35-75 nm and 0.5-2.5 nm. The local slope distribution of the created periodic structures was also studied. These topography results were compared with the predictions of the Bradley-Harper model. The amorphised surface layers were investigated by a spectroscopic ellipsometer. According to the results, the amorphised thicknesses were changed in the range of 8 nm to 4 nm as a function of ion incidence angles. The reflectance of the structured surfaces was simulated using ellipsometric results and measured with a reflectometer. Based on the spectra, a controlled modification of reflectance within 45% and 50% can be achieved on Si(111) at 460 nm wavelength. According to the measured results, the characteristic sizes (periodicity and amplitude) and optical property of silicon can be fine-tuned by low-energy focused ion irradiation at the given interval of incidence angles.
RESUMO
The present investigation is directed to phase transitions in the equimolar NiCoFeCrGa high entropy alloy, which is a mixture of face-centered cubic (FCC) and body-centered cubic (BCC) crystalline phases. The microstructure of the samples was investigated by using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), transmission electron microscopy-based energy-dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS), as well as X-ray diffraction (XRD) measurements. Based on the phases observed in different temperature ranges, a sequence of the phase transitions can be established, showing that in a realistic process, when freely cooling the sample with the furnace from high to room temperature, a microstructure having spinodal-like decomposition can also be expected. The elemental mapping and magnetic behaviors of this decomposed structure are also studied.