Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 380-382, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518743

RESUMO

Bioorthogonal chemistry was deservedly recognized with the 2022 Nobel Prize in Chemistry, having transformed the way chemists and biologists interrogate biological systems in the past twenty years. This Voices piece asks researchers from a range of backgrounds: what are some major challenges and opportunities facing the field in coming years?


Assuntos
Prêmio Nobel , Química
2.
J Am Chem Soc ; 146(1): 62-67, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134034

RESUMO

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.


Assuntos
DNA Helicases , Proteômica , Humanos , DNA Helicases/química , DNA/química
3.
Science ; 382(6672): 820-828, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37917749

RESUMO

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Assuntos
Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Glutationa , Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte de Fosfato , Glutationa/metabolismo , Homeostase , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteômica , Retroalimentação Fisiológica , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Proteólise , Células HEK293 , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo
4.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808863

RESUMO

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity. As a result, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop selective chemical inhibitors for helicases, enzymes with highly dynamic conformations. We envisioned that electrophilic 'scout fragments', which have been used for chemical proteomic based profiling, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest a covalent inhibitor discovery approach to target helicases and potentially other conformationally dynamic mechanoenzymes.

6.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982829

RESUMO

A series of S-alkyl substituted thioglycolurils was prepared through the alkylation of corresponding thioglycolurils with halogenoalkanes and tested for their fungicidal activity against six phytopathogenic fungi from different taxonomic classes: Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, and Sclerotinia sclerotiorum, and two pathogenic yeasts: Candida albicans and Cryptococcus neoformans var. grubii. A number of S-alkyl substituted thioglycolurils exhibited high activity against Venturia inaequalis and Rhizoctonia solani (85-100% mycelium growth inhibition), and moderate activity against other phytopathogens. S-Ethyl substituted thioglycolurils possessed a high activity against Candida albicans. Additionally, the hemolytic and cytotoxic properties of promising derivatives were determined using human red blood cells and human embryonic kidney cells, respectively. Two S-ethyl derivatives possessed both low cytotoxicity against normal human cells and high fungicidal activity against Candida albicans.


Assuntos
Antineoplásicos , Rhizoctonia , Humanos , Fungos do Gênero Venturia , Antineoplásicos/farmacologia , Candida albicans , Antifúngicos/farmacologia , Relação Estrutura-Atividade
7.
Nat Chem Biol ; 19(7): 815-824, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36823351

RESUMO

Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.


Assuntos
Creatina Quinase , Creatina , Creatina Quinase/química , Creatina Quinase/metabolismo , Creatina/farmacologia , Cisteína , Fosfotransferases , Isoformas de Proteínas
8.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203447

RESUMO

Endothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo. Isolated brain tissue of control and prednisolone-injected mice was examined by employing immunoblotting and confocal laser scanning immunofluorescence microscopy, and the physiological and behavioral effects were analyzed. The control tissue samples revealed the expression of barrier-forming tight junction proteins claudin-1, -3, and -5 and of the paracellular cation and water-channel-forming protein claudin-2. Prednisolone administration for 7 days at doses of 70 mg/kg caused physiological and behavioral effects and downregulated claudin-1 and -3 and the channel-forming claudin-2 without altering their localization in cerebral blood vessels. Changes in the expression of these claudins might have effects on the ionic and acid-base balance in brain tissue, suggesting the relevance of our findings for therapeutic options in disorders such as cerebral edema and psychiatric failure.


Assuntos
Claudinas , Prednisolona , Animais , Camundongos , Prednisolona/farmacologia , Claudina-2 , Claudina-1 , Células Endoteliais , Encéfalo
9.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187674

RESUMO

Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide chemical probe EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and availability of functional mRNA pools that can be depleted due to extensive alternative splicing. We further introduce a comprehensive list of proteins involved in splicing and leverage both cysteine- and protein-directed activity-based protein profiling (ABPP) data with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in primary human T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.

10.
J Am Chem Soc ; 144(40): 18688-18699, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170674

RESUMO

Targeted protein degradation induced by heterobifunctional compounds and molecular glues presents an exciting avenue for chemical probe and drug discovery. To date, small-molecule ligands have been discovered for only a limited number of E3 ligases, which is an important limiting factor for realizing the full potential of targeted protein degradation. We report herein the discovery by chemical proteomics of azetidine acrylamides that stereoselectively and site-specifically react with a cysteine (C1113) in the E3 ligase substrate receptor DCAF1. We demonstrate that the azetidine acrylamide ligands for DCAF1 can be developed into electrophilic proteolysis-targeting chimeras (PROTACs) that mediated targeted protein degradation in human cells. We show that this process is stereoselective and does not occur in cells expressing a C1113A mutant of DCAF1. Mechanistic studies indicate that only low fractional engagement of DCAF1 is required to support protein degradation by electrophilic PROTACs. These findings, taken together, demonstrate how the chemical proteomic analysis of stereochemically defined electrophilic compound sets can uncover ligandable sites on E3 ligases that support targeted protein degradation.


Assuntos
Azetidinas , Quimera , Acrilamida , Cisteína/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Proteólise , Proteômica , Ubiquitina-Proteína Ligases/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994671

RESUMO

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Assuntos
Proteínas do Domínio Armadillo , Cisteína , Proteínas do Citoesqueleto , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Axônios , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Homeostase , NAD+ Nucleosidase , Proteômica
12.
STAR Protoc ; 2(2): 100458, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33899026

RESUMO

Differential amino acid reactivity with chemical probes can provide valuable information on the functionality and ligandability of proteins in native biological systems. Here, we present a quantitative, multiplexed chemical proteomic protocol for in-depth reactivity and ligandability profiling of cysteines in proteins in quiescent and stimulated T cells. This protocol illuminates dynamic immune state-dependent alterations in cysteine reactivity, revealing chemoselective and stereoselective small-molecule interactions with cysteines in structurally and functionally diverse proteins that lack chemical probes. For complete details on the use and execution of this protocol, please refer to Vinogradova et al. (2020).


Assuntos
Cisteína/metabolismo , Proteoma/metabolismo , Proteômica , Linfócitos T/metabolismo , Humanos , Linfócitos T/citologia
13.
Biochemistry (Mosc) ; 86(Suppl 1): S12-S23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33827397

RESUMO

Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot-Marie-Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.


Assuntos
Glicina-tRNA Ligase/genética , Mutação , Doenças do Sistema Nervoso/enzimologia , Doença de Charcot-Marie-Tooth/enzimologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Feminino , Humanos , Masculino , Atrofia Muscular Espinal/enzimologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Neurônios/enzimologia , Neurônios/fisiologia
14.
Nat Biotechnol ; 39(5): 630-641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33398154

RESUMO

Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)G12C and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.


Assuntos
Aminoácidos/genética , Elementos de Resposta Antioxidante/genética , Cisteína/genética , Proteoma/genética , Tirosina Quinase da Agamaglobulinemia/genética , Humanos , Espectrometria de Massas , Proteômica/tendências , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
RSC Adv ; 11(45): 28395-28400, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480725

RESUMO

An original method for the synthesis of 2-hydrazonoimidazo[4,5-d]thiazolone derivatives has been developed based on a one-pot acid-induced sequence of hydrazone formation from 3-thioxoperhydroimidazo[4,5-e]-1,2,4-triazinones and aromatic aldehydes, triazine ring contraction to imidazolidine one, and Dimroth-type N/S-interchange of N-aminothioglycolurils formed in situ into 2-hydrazonoimidazo[4,5-d]thiazolones. 3-Phenylacroleine derivatives are also suitable substrates for the reaction with thioxoperhydroimidazotriazinones.

16.
Cell Chem Biol ; 27(11): 1371-1382.e6, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32857985

RESUMO

Rpn13 is one of several ubiquitin receptors in the 26S proteasome. Cys88 of Rpn13 has been proposed to be the principal target of RA190, an electrophilic small molecule with interesting anti-cancer activities. Here, we examine the claim that RA190 mediates its cytotoxic effects through engagement with Rpn13. We find no evidence that this is the case. In vitro, RA190 is has no measurable effect on any of the known interactions of Rpn13. In cellulo, we see no physical engagement of Rpn13 by RA190, either on C88 or any other residue. However, chemical proteomics experiments in two different cell lines reveal that dozens of other proteins are heavily engaged by RA190. Finally, increasing or reducing the level of Rpn13 in HeLa and melanoma cells had no effect on the sensitivity of HeLa or melanoma cells to RA190. We conclude that Rpn13 is not the physiologically relevant target of RA190.


Assuntos
Compostos de Benzilideno/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Células Cultivadas , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estrutura Molecular
17.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730809

RESUMO

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Assuntos
Cisteína/metabolismo , Ligantes , Linfócitos T/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Acrilamidas/química , Acrilamidas/farmacologia , Células Cultivadas , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/metabolismo
18.
J Am Chem Soc ; 142(19): 8972-8979, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32302104

RESUMO

The emerging use of covalent ligands as chemical probes and drugs would benefit from an expanded repertoire of cysteine-reactive electrophiles for efficient and diverse targeting of the proteome. Here we use the endogenous electrophile sensor of mammalian cells, the KEAP1-NRF2 pathway, to discover cysteine-reactive electrophilic fragments from a reporter-based screen for NRF2 activation. This strategy identified a series of 2-sulfonylpyridines that selectively react with biological thiols via nucleophilic aromatic substitution (SNAr). By tuning the electrophilicity and appended recognition elements, we demonstrate the potential of the 2-sulfonylpyridine reactive group with the discovery of a selective covalent modifier of adenosine deaminase (ADA). Targeting a cysteine distal to the active site, this molecule attenuates the enzymatic activity of ADA and inhibits proliferation of lymphocytic cells. This study introduces a modular and tunable SNAr-based reactive group for targeting reactive cysteines in the human proteome and illustrates the pharmacological utility of this electrophilic series.


Assuntos
Cisteína/química , Piridinas/química , Dióxido de Enxofre/química , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Humanos , Estrutura Molecular
19.
Angew Chem Int Ed Engl ; 59(10): 3896-3899, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863675

RESUMO

Target engagement assays are crucial for establishing the mechanism-of-action of small molecules in living systems. Integral membrane transporters can present a challenging protein class for assessing cellular engagement by small molecules. The chemical proteomic discovery of alpha-chloroacetamide (αCA) compounds that covalently modify cysteine-54 (C54) of the MPC2 subunit of the mitochondrial pyruvate carrier (MPC) is presented. This finding is used to create an alkyne-modified αCA, YY4-yne, that serves as a cellular engagement probe for MPC2 in click chemistry-enabled western blotting or global mass spectrometry-based proteomic experiments. Studies with YY4-yne revealed that UK-5099, an alpha-cyanocinnamate inhibitor of the MPC complex, engages MPC2 with remarkable selectivity in human cells. These findings support a model where UK-5099 inhibits the MPC complex by binding to C54 of MPC2 in a covalent reversible manner that can be quantified in cells using the YY4-yne probe.


Assuntos
Acetamidas/química , Mitocôndrias/química , Sondas Moleculares/química , Proteômica , Ácido Pirúvico/metabolismo , Acetamidas/antagonistas & inibidores , Acetamidas/metabolismo , Alcinos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sondas Moleculares/metabolismo , Estrutura Molecular , Ácido Pirúvico/antagonistas & inibidores , Ácido Pirúvico/química
20.
Angew Chem Int Ed Engl ; 58(33): 11385-11389, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222866

RESUMO

Reversible covalency, achieved with, for instance, highly electron-deficient olefins, offers a compelling strategy to design chemical probes and drugs that benefit from the sustained target engagement afforded by irreversible compounds, while avoiding permanent protein modification. Reversible covalency has mainly been evaluated for cysteine residues in individual kinases and the broader potential for this strategy to engage cysteines across the proteome remains unexplored. Herein, we describe a mass-spectrometry-based platform that integrates gel filtration with activity-based protein profiling to assess cysteine residues across the human proteome for both irreversible and reversible interactions with small-molecule electrophiles. Using this method, we identify numerous cysteine residues from diverse protein classes that are reversibly engaged by cyanoacrylamide fragment electrophiles, revealing the broad potential for reversible covalency as a strategy for chemical-probe discovery.


Assuntos
Cisteína/química , Fosfotransferases/química , Proteoma/química , Proteoma/metabolismo , Sequência de Aminoácidos , Regulação Enzimológica da Expressão Gênica , Fosfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...