Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(6): 1311-1331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056070

RESUMO

Dissecting the diversity of midbrain dopamine (DA) neurons by optotagging is a promising addition to better identify their functional properties and contribution to motivated behavior. Retrograde molecular targeting of DA neurons with specific axonal projection allows further refinement of this approach. Here, we focus on adult mouse DA neurons in the substantia nigra pars compacta (SNc) projecting to dorsal striatum (DS) by demonstrating the selectivity of a floxed AAV9-based retrograde channelrhodopsin-eYFP (ChR-eYFP) labeling approach in DAT-cre mice. Furthermore, we show the utility of a sparse labeling version for anatomical single-cell reconstruction and demonstrate that ChR-eYFR expressing DA neurons retain intrinsic functional properties indistinguishable from conventionally retrogradely red-beads-labeled neurons. We systematically explore the properties of optogenetically evoked action potentials (oAPs) and their interaction with intrinsic pacemaking in this defined subpopulation of DA neurons. We found that the shape of the oAP and its first derivative, as a proxy for extracellularly recorded APs, is highly distinct from spontaneous APs (sAPs) of the same neurons and systematically varies across the pacemaker duty cycle. The timing of the oAP also affects the backbone oscillator of the intrinsic pacemaker by introducing transient "compensatory pauses". Characterizing this systematic interplay between oAPs and sAPs in defined DA neurons will also facilitate a refinement of DA neuron optotagging in vivo.


Assuntos
Neurônios Dopaminérgicos , Optogenética , Camundongos , Animais , Neurônios Dopaminérgicos/fisiologia , Potenciais de Ação/fisiologia , Mesencéfalo , Parte Compacta da Substância Negra , Substância Negra/fisiologia
2.
Cell Rep ; 39(2): 110659, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417688

RESUMO

The prefrontal cortex (PFC) is essential for working memory (WM) and has primarily been viewed as being responsible for maintaining information over a delay, but it is unclear whether it also plays a more general role during WM. Using task phase-specific optogenetic silencing of pyramidal neurons in the medial PFC (mPFC) of mice performing a spatial WM task, we find that the mPFC is required not only during the delay phase of the task but also during other phases requiring the encoding and retrieval of spatial information. Imaging of mPFC pyramidal neurons reveals that they are most strongly influenced by the animals' position and running direction, indicating a fundamental role in spatial navigation. Pyramidal neuron ensembles also represent to-be-remembered goal locations in a dynamic manner. Taken together, these results delineate the functional contribution of mPFC pyramidal neurons to WM, extending their role beyond the maintenance of information.


Assuntos
Memória de Curto Prazo , Células Piramidais , Animais , Memória de Curto Prazo/fisiologia , Camundongos , Optogenética , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Memória Espacial/fisiologia
3.
Anal Chim Acta ; 1179: 338835, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34535252

RESUMO

Although electron impact ionization (EI) remains the standard ionization source for GC-MS, it presents extensive fragmentation as its main limitation. The potential of a novel plasma-based soft ionization source named controlled-atmosphere flexible microtube plasma (CA-FµTP) has been evaluated in this work for the determination of monoaromatic volatile BTEX group (namely benzene, toluene, ethylbenzene, and o-, m- and p-xylenes) in olive oil, based on headspace technique. The obtained results show an attractive advantage over EI due to no fragmentation was observed. A nitrosated ion [M + NO]+ is obtained as the most abundant species. Thus, the BTEX mass spectrum identification can be carried out without major effort. In general, the sensitivity for CA-FµTP was comparable to those obtained by EI, achieving LODs ranged from 0.6 to 1.0 µg kg-1. The potential usefulness of GC-CA-FµTP-MS for the detection of BTEX was demonstrated by analyzing olive oil samples and identifying traces of these compounds in one sample. Therefore, the proposed plasma-based soft ionization is suitable for BTEX analysis in fatty complex matrixes as olive oil.


Assuntos
Derivados de Benzeno , Xilenos , Atmosfera , Benzeno/análise , Derivados de Benzeno/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Azeite de Oliva , Tolueno/análise , Xilenos/análise
4.
Anal Chem ; 92(14): 9722-9729, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32579344

RESUMO

A new soft ionization device for mass spectrometry is presented using the flexible microtube plasma under controlled atmospheric conditions. The controlled atmosphere flexible microtube plasma consists of the plasma source itself connected to a gas chromatograph and a mass spectrometer using a borosilicate glass cross piece. Controlled atmosphere, for example, nitrogen and/or an oxygen mixture, is introduced to the system to create a clean ionization environment. Reproducibility issues are discussed, and solutions are presented manipulating the gas flow in the cross piece. A proof of concept is shown using a ketone mixture introduced to the mass spectrometer to optimize atmospheric conditions. Furthermore, application of the presented device for the sensitive and nonfragmenting ionization of volatile organic biomarkers relevant for cancer is carried out. Sample treatment for human saliva is described, and relevant candidate biomarkers are measured in the saliva matrix, showing a very good ionization efficiency and neglectable matrix effects with limits of detection below 80 ppt.


Assuntos
Biomarcadores Tumorais/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Neoplasias/diagnóstico , Saliva/química , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Reprodutibilidade dos Testes
5.
Neuroimage ; 216: 116813, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32276053

RESUMO

Two-person neuroscience (2 â€‹PN) is a recently introduced conceptual and methodological framework used to investigate the neural basis of human social interaction from simultaneous neuroimaging of two or more subjects (hyperscanning). In this study, we adopted a 2 â€‹PN approach and a multiple-brain connectivity model to investigate the neural basis of a form of cooperation called joint action. We hypothesized different intra-brain and inter-brain connectivity patterns when comparing the interpersonal properties of joint action with non-interpersonal conditions, with a focus on co-representation, a core ability at the basis of cooperation. 32 subjects were enrolled in dual-EEG recordings during a computerized joint action task including three conditions: one in which the dyad jointly acted to pursue a common goal (joint), one in which each subject interacted with the PC (PC), and one in which each subject performed the task individually (Solo). A combination of multiple-brain connectivity estimation and specific indices derived from graph theory allowed to compare interpersonal with non-interpersonal conditions in four different frequency bands. Our results indicate that all the indices were modulated by the interaction, and returned a significantly stronger integration of multiple-subject networks in the joint vs. PC and Solo conditions. A subsequent classification analysis showed that features based on multiple-brain indices led to a better discrimination between social and non-social conditions with respect to single-subject indices. Taken together, our results suggest that multiple-brain connectivity can provide a deeper insight into the understanding of the neural basis of cooperation in humans.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Comportamento Cooperativo , Eletroencefalografia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Interação Social , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Eletroencefalografia/métodos , Humanos , Masculino , Adulto Jovem
6.
Anal Chem ; 91(5): 3733-3739, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672695

RESUMO

Plasma sources in atmospheric pressure soft-ionization mass spectrometry have gained significant interest in recent years. As many of these sources are used under ambient air conditions, their interaction with the surrounding atmosphere plays an important role in the ionization pathway. This study focuses on the interaction between the plasma source and the surrounding atmosphere by connecting the plasma source to the mass spectrometer using a 2 mm ID closed reactant capillary supplied by a reactant gas up to 500 mL per minute to gain a controlled atmosphere. Different reactant gases (Ar, He, O2, and N2) and reactant gas mixtures are tested with regard to the DBDI performance and then used to improve the ionization efficiency. Tailoring the controlled atmosphere for a certain analyte, for example, perfluorinated compounds, leads to significantly improved limits of detection up to 2 ppb.

7.
Elife ; 72018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30421719

RESUMO

Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition or excitation of dopamine neurons at the time of the US omission revealed that this dopamine signal is both necessary for, and sufficient to accelerate, normal fear extinction learning. These results identify a prediction error-like neuronal signal that is necessary to initiate fear extinction and reveal a crucial role of DA neurons in this form of safety learning.


Assuntos
Aprendizagem da Esquiva , Neurônios Dopaminérgicos/fisiologia , Extinção Psicológica , Medo , Aprendizagem , Área Tegmentar Ventral/fisiologia , Animais , Eletroencefalografia , Masculino , Camundongos Endogâmicos C57BL , Optogenética , Fotometria
8.
Anal Chem ; 90(17): 10111-10116, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30063325

RESUMO

Dielectric barrier discharges are used as soft ionization sources for mass spectrometers or ion mobility spectrometers, enabling excellent possibilities for analytical applications. A new robust and small-footprint discharge design, flexible microtube plasma (FµTP), developed as a result of ongoing miniaturization and electrode design processes, is presented in this work. This design provides major safety benefits by fitting the electrode into an inert flexible fused silica capillary (tube). Notably, in this context, the small discharge dimensions enable very low gas flows in the range of <100 mL min-1; portability; the use of hydrogen, nitrogen, and air in addition to noble gases such as helium and argon, including its mixtures with propane; and application in microchip environments. By coupling FµTP with gas chromatography/mass spectrometry, we show that the polarity principle of the new discharge design allows it to outperform established ionization sources such as dielectric barrier discharge for soft ionization (DBDI) and low-temperature plasma (LTP) at low concentrations of perfluoroalkanes in terms of sensitivity, ionization efficiency, chemical background, linear dynamic range, and limit of detection by a large margin. In negative ion mode, the limit of detection is improved by more than 3-fold compared with that of DBDI and by 8-fold compared with that of LTP. The protonation capability was evaluated by headspace measurements of diisopropyl methylphosphonate in positive ion mode, showing low fragmentation and high stability in comparison to DBDI and LTP.

9.
Anal Chem ; 89(17): 9368-9374, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28727447

RESUMO

Dielectric barrier discharge (DBD)-based analytical applications have experienced rapid development in recent years. DBD designs and parameters and the application they are used for can vary considerably. This leads to a diverse field with many apparently unique systems that are all based on the same physical principle. The most significant changes among DBDs used for chemical analysis are in how the discharge electrodes are separated from the ignited discharge gas. While the official definition of a DBD states that at least one electrode has to be covered by a dielectric to be considered a DBD, configurations with both electrodes covered by dielectric layers can also be realized. The electrode surface plays a major role in several plasma-related technical fields, surface treatment or sputtering processes, for example, and has hence been studied in great detail. Analytical DBDs are often operated at low power and atmospheric pressure, making a direct transfer of insight and know-how gained from the aforementioned well-studied fields complicated. This work focuses on comparing two DBD configurations: the low temperature plasma probe (LTP) and the dielectric barrier discharge for soft ionization (DBDI). The LTP is representative of a DBD with one covered electrode and the DBDI of a design in which both electrodes are covered. These two configurations are well suited for a systematic comparison due to their similar geometric designs based on a dielectric capillary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...