Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Neuro Oncol ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39495010

RESUMO

As cancer patients with intracranial metastatic disease experience increasingly prolonged survival, the diagnosis and management of recurrent brain metastasis pose significant challenges in clinical practice. Prior to deciding upon a management strategy, it is necessary to ascertain whether patients have recurrent/progressive disease vs adverse radiation effect, classify the recurrence as local or distant in the brain, evaluate the extent of intracranial disease (size, number and location of lesions, and brain metastasis velocity), the status of extracranial disease, and enumerate the interval from the last intracranially directed intervention to disease recurrence. A spectrum of salvage local treatment options includes surgery (resection and laser interstitial thermal therapy [LITT]) with or without adjuvant radiotherapy in the forms of external beam radiotherapy, intraoperative radiotherapy, or brachytherapy. Nonoperative salvage local treatments also range from single fraction and fractionated stereotactic radiosurgery (SRS/FSRS) to whole brain radiation therapy (WBRT). Optimal integration of systemic therapies, preferably with central nervous system (CNS) activity, may also require reinterrogation of brain metastasis tissue to identify actionable molecular alterations specific to intracranial progressive disease. Ultimately, the selection of the appropriate management approach necessitates a sophisticated understanding of patient, tumor, and prior treatment-related factors and is often multimodal; hence, interdisciplinary evaluation for such patients is indispensable.

2.
Neuro Oncol ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39492786

RESUMO

BACKGROUND: Following surgery, patients with newly diagnosed glioblastoma frequently enter clinical trials. Nuanced risk assessment is warranted to reduce imbalances between study arms. Here, we aimed (I) to analyze the interactive effects of residual tumor with clinical and molecular factors on outcome and (II) to define a postoperative risk assessment tool. METHODS: The RANO resect group retrospectively compiled an international, seven-center training cohort of patients with newly diagnosed glioblastoma. The combined associations of residual tumor with molecular or clinical factors and survival were analyzed, and recursive partitioning analysis was performed for risk modeling. The resulting model was prognostically verified in a separate external validation cohort. RESULTS: Our training cohort compromised 1003 patients with newly diagnosed isocitrate dehydrogenase-wildtype glioblastoma. Residual tumor, O6-methylguanine DNA methyltransferase (MGMT) promotor methylation status, age, and postoperative KPS were prognostic for survival and incorporated into regression tree analysis. By individually weighting the prognostic factors, an additive score (range, 0-9 points) integrating these four variables distinguished patients with low (0-2 points), intermediate (3-5 points), and high risk (6-9 points) for inferior survival. The prognostic value of our risk model was retained in treatment-based subgroups and confirmed in an external validation cohort of 258 patients with glioblastoma. Compared to previously postulated models, goodness-of-fit measurements were superior for our model. CONCLUSIONS: The novel RANO risk model serves as an easy-to-use, yet highly prognostic tool for postoperative patient stratification prior to further therapy. The model may serve to guide patient management and reduce imbalances between study arms in prospective trials.

3.
Lancet Oncol ; 25(10): e512-e519, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39362262

RESUMO

Patients with brain tumours are motivated to participate in clinical trials involving repeat tissue sampling. Normalising the use of neoadjuvant and staged surgical trials necessitates collaboration among patients, regulatory agencies, and researchers. Initial and repetitive tissue sampling plays a crucial role in enhancing our understanding of resistance mechanisms and vulnerabilities in brain tumour therapy. Standardising biopsy techniques and ensuring technical uniformity across institutions are vital for effective interinstitutional collaboration. Although liquid biopsy technologies hold promise, they are not yet ready to replace tissue analysis. Clear communication about the risks and benefits of biopsies is essential, particularly regarding potential postoperative deficits. Changes in mindset and neurosurgical culture are imperative to achieve much needed breakthroughs in the development of new, effective therapies for brain tumours.


Assuntos
Neoplasias Encefálicas , Desenvolvimento de Medicamentos , Glioma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Antineoplásicos/uso terapêutico
4.
Acta Neuropathol ; 148(1): 50, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382765

RESUMO

Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Metilação de DNA , Epigênese Genética , Isocitrato Desidrogenase , Mutação , Humanos , Astrocitoma/genética , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Mutação/genética , Epigênese Genética/genética , Feminino , Masculino , Desenvolvimento Embrionário/genética , Pessoa de Meia-Idade , Adulto , Gradação de Tumores
5.
Lancet Oncol ; 25(11): e581-e588, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39481414

RESUMO

The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.


Assuntos
Inteligência Artificial , Humanos , Oncologia/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Prognóstico , Resultado do Tratamento
6.
Lancet Oncol ; 25(11): e589-e601, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39481415

RESUMO

Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.


Assuntos
Inteligência Artificial , Oncologia , Humanos , Inteligência Artificial/normas , Oncologia/normas , Reprodutibilidade dos Testes , Neoplasias Encefálicas/terapia
7.
Neurooncol Adv ; 6(1): vdae142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233830

RESUMO

Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38926092

RESUMO

Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.

9.
Eur J Nucl Med Mol Imaging ; 51(12): 3662-3679, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38898354

RESUMO

PURPOSE: To provide practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor (SSTR) ligands. METHODS: This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). RESULTS: Positron emission tomography (PET) using somatostatin receptor (SSTR) ligands can detect meningioma tissue with high sensitivity and specificity and may provide clinically relevant information beyond that obtained from structural magnetic resonance imaging (MRI) or computed tomography (CT) imaging alone. SSTR-directed PET imaging can be particularly useful for differential diagnosis, delineation of meningioma extent, detection of osseous involvement, and the differentiation between posttherapeutic scar tissue and tumour recurrence. Moreover, SSTR-peptide receptor radionuclide therapy (PRRT) is an emerging investigational treatment approach for meningioma. CONCLUSION: These practice guidelines will define procedure standards for the application of PET imaging in patients with meningiomas and related SSTR-targeted PRRTs in routine practice and clinical trials and will help to harmonize data acquisition and interpretation across centers, facilitate comparability of studies, and to collect larger databases. The current document provides additional information to the evidence-based recommendations from the PET/RANO Working Group regarding the utilization of PET imaging in meningiomas Galldiks (Neuro Oncol. 2017;19(12):1576-87). The information provided should be considered in the context of local conditions and regulations.


Assuntos
Meningioma , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Humanos , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Meningioma/terapia , Ligantes , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/terapia , Marcação por Isótopo , Compostos Radiofarmacêuticos/uso terapêutico , Medicina Nuclear/normas , Tomografia por Emissão de Pósitrons/normas , Tomografia por Emissão de Pósitrons/métodos
10.
J Clin Oncol ; 42(21): 2588-2598, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38833641

RESUMO

Mutations in isocitrate dehydrogenase (IDH) genes, an early step in the ontogeny of lower-grade gliomas, induce global epigenetic changes characterized by a hypermethylation phenotype and are critical to tumor classification, treatment decision making, and estimation of patient prognosis. The introduction of IDH inhibitors to block the oncogenic neomorphic function of the mutated protein has resulted in new therapeutic options for these patients. To appreciate the implications of these recent IDH inhibitor results, it is important to juxtapose historical outcomes with chemoradiotherapy. Herein, we rationally evaluate recent IDH inhibitor data within historical precedents to guide contemporary decisions regarding the role of observation, maximal safe resection, adjuvant therapies, and the import of patient and tumor variables. The biological underpinnings of the IDH pathway and the mechanisms, impact, and limitations of IDH inhibitors, the actual magnitude of tumor regression and patient benefit, and emergence of resistance pathways are presented to guide future trial development. Management in the current, molecularly defined era will require careful patient selection and risk factor assessment, followed by an open dialog about the results of studies such as INDIGO, as well as mature data from legacy trials, and a discussion about risk-versus-benefit for the choice of treatment, with multidisciplinary decision making as an absolute prerequisite.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Glioma/genética , Glioma/terapia , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
11.
Neuro Oncol ; 26(9): 1545-1556, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770775

RESUMO

Drug delivery to the central nervous system (CNS) has been a major challenge for CNS tumors due to the impermeability of the blood-brain barrier (BBB). There has been a multitude of techniques aimed at overcoming the BBB obstacle aimed at utilizing natural transport mechanisms or bypassing the BBB which we review here. Another approach that has generated recent interest in the recently published literature is to use new technologies (Laser Interstitial Thermal Therapy, LITT; or Low-Intensity Focused Ultrasound, LIFU) to temporarily increase BBB permeability. This review overviews the advantages, disadvantages, and major advances of each method. LIFU has been a major area of research to allow for chemotherapeutics to cross the BBB which has a particular emphasis in this review. While most of the advances remain in animal studies, there are an increasing number of translational clinical trials that will have results in the next few years.


Assuntos
Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica/metabolismo , Humanos , Sistemas de Liberação de Medicamentos/métodos , Animais , Consenso , Neoplasias Encefálicas/terapia , Antineoplásicos/uso terapêutico
13.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703775

RESUMO

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Assuntos
Glioblastoma , Glucose , Histonas , Macrófagos , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Histonas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glucose/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-10/metabolismo , Glicólise , Microglia/metabolismo , Microglia/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tolerância Imunológica
14.
Neuro Oncol ; 26(9): 1651-1659, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38656347

RESUMO

BACKGROUND: Single-session stereotactic radiosurgery (SRS) or surgical resection alone for brain metastases larger than 2 cm results in unsatisfactory local control. We conducted a phase I trial for brain metastases(>2 cm) to determine the safety of preoperative SRS at escalating doses. METHODS: Radiosurgery dose was escalated at 3 Gy increments for 3 cohorts based on maximum tumor dimension starting at: 18 Gy for >2-3 cm, 15 Gy for >3-4 cm, and 12 Gy for >4-6 cm. Dose-limiting toxicity was defined as grade III or greater acute toxicity. RESULTS: A total of 35 patients/36 lesions were enrolled. For tumor size >2-3 cm, patients were enrolled up to the second dose level (21 Gy); for >3-4 cm and >4-6 cm cohorts the third dose level (21 and 18 Gy, respectively) was reached. There were 2 DLTs in the >3-4 cm arm at 21 Gy. The maximum tolerated dose of SRS for >2-3 cm was not reached; and was 18 Gy for both >3-4 cm arm and >4-6 cm arm. With a median follow-up of 64.0 months, the 6- and 12-month local control rates were 85.9% and 76.6%, respectively. One patient developed grade 3 radiation necrosis at 5 months. The 2-year rate of leptomeningeal disease (LMD) was 0%. CONCLUSIONS: Preoperative SRS with dose escalation followed by surgical resection for brain metastases greater than 2 cm in size demonstrates acceptable acute toxicity. The phase II portion of the trial will be conducted at the maximum tolerated SRS doses.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Radiocirurgia/efeitos adversos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Adulto , Dose Máxima Tolerável , Dosagem Radioterapêutica , Seguimentos , Cuidados Pré-Operatórios , Idoso de 80 Anos ou mais
15.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562747

RESUMO

Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is however difficult and, apart from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. Experimental Design: RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n=138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. We used the DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) that is based on classification scores derived from a CNS-tumor classifier. We found that the CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with i) an upregulation of cell cycling genes; ii) a downregulation of glial differentiation genes; iii) an upregulation of embryonic development genes (e.g. HOX, PAX and TBX) and iv) an upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes.

16.
Neuro Oncol ; 26(Supplement_2): S173-S181, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445964

RESUMO

BACKGROUND: H3 K27M-mutant diffuse glioma primarily affects children and young adults, is associated with a poor prognosis, and no effective systemic therapy is currently available. ONC201 (dordaviprone) has previously demonstrated efficacy in patients with recurrent disease. This phase 3 trial evaluates ONC201 in patients with newly diagnosed H3 K27M-mutant glioma. METHODS: ACTION (NCT05580562) is a randomized, double-blind, placebo-controlled, parallel-group, international phase 3 study of ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma. Patients who have completed standard frontline radiotherapy are randomized 1:1:1 to receive placebo, once-weekly dordaviprone, or twice-weekly dordaviprone on 2 consecutive days. Primary efficacy endpoints are overall survival (OS) and progression-free survival (PFS); PFS is assessed by response assessment in neuro-oncology high-grade glioma criteria (RANO-HGG) by blind independent central review. Secondary objectives include safety, additional efficacy endpoints, clinical benefit, and quality of life. Eligible patients have histologically confirmed H3 K27M-mutant diffuse glioma, a Karnofsky/Lansky performance status ≥70, and completed first-line radiotherapy. Eligibility is not restricted by age; however, patients must be ≥10 kg at time of randomization. Patients with a primary spinal tumor, diffuse intrinsic pontine glioma, leptomeningeal disease, or cerebrospinal fluid dissemination are not eligible. ACTION is currently enrolling in multiple international sites.


Assuntos
Neoplasias Encefálicas , Glioma , Mutação , Humanos , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Método Duplo-Cego , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Adulto , Masculino , Feminino , Histonas/genética , Adolescente , Criança , Adulto Jovem , Prognóstico , Taxa de Sobrevida , Qualidade de Vida , Pessoa de Meia-Idade , Seguimentos , Idoso
17.
Neuro Oncol ; 26(7): 1181-1194, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38466087

RESUMO

Brain tumor diagnostics have significantly evolved with the use of positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the Response Assessment in Neuro-Oncology (RANO) Group, the European Association of Neuro-oncology, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g. MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations, and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos
18.
J Neurooncol ; 166(3): 431-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310157

RESUMO

PURPOSE: Upfront dual checkpoint blockade with immune checkpoint inhibitors (ICI) has demonstrated efficacy for treating melanoma brain metastases (MBM) in asymptomatic patients. Whether the combination of stereotactic radiosurgery (SRS) with dual checkpoint blockade improves outcomes over dual-checkpoint blockade alone is unknown. We evaluated clinical outcomes of patients with MBM receiving ICI with nivolumab and ipilimumab, with and without SRS. METHODS: 49 patients with 158 MBM receiving nivolumab and ipilimumab for untreated MBM between 2015 and 2022 were identified at our institution. Patient and tumor characteristics including age, Karnofsky Performance Status (KPS), presence of symptoms, cancer history, MBM burden, and therapy course were recorded. Outcomes measured from initiation of MBM-directed therapy included overall survival (OS), local control (LC), and distant intracranial control (DIC). Time-to-event analysis was conducted with the Kaplan-Meier method. RESULTS: 25 patients with 74 MBM received ICI alone, and 24 patients with 84 MBM received concurrent SRS. Median follow-up was 24 months. No differences in age (p = 0.96), KPS (p = 0.85), presence of symptoms (p = 0.79), prior MBM (p = 0.68), prior MBM-directed surgery (p = 0.96) or SRS (p = 0.68), MBM size (p = 0.67), or MBM number (p = 0.94) were seen. There was a higher rate of nivolumab and ipilimumab course completion in the SRS group (54% vs. 24%; p = 0.029). The SRS group received prior immunotherapy more often than the ICI alone group (54% vs. 8.0%; p < 0.001). There was no significant difference in 1-year OS (72% vs. 71%, p = 0.20) and DIC (63% v 51%, p = 0.26) between groups. The SRS group had higher 1-year LC (92% vs. 64%; p = 0.002). On multivariate analysis, LC was improved with combination therapy (AHR 0.38, p = 0.01). CONCLUSION: In our analysis, patients who received SRS with nivolumab and ipilimumab had superior LC without increased risk of toxicity or compromised immunotherapy treatment completion despite the SRS cohort having higher rates of prior immunotherapy. Further prospective study of combination nivolumab and ipilimumab with SRS is warranted.


Assuntos
Antineoplásicos Imunológicos , Neoplasias Encefálicas , Melanoma , Radiocirurgia , Humanos , Ipilimumab/uso terapêutico , Melanoma/patologia , Nivolumabe/uso terapêutico , Radiocirurgia/métodos , Estudos Prospectivos , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Estudos Retrospectivos
20.
Neuro Oncol ; 26(1): 166-177, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37665776

RESUMO

BACKGROUND: Resection of the contrast-enhancing (CE) tumor represents the standard of care in newly diagnosed glioblastoma. However, some tumors ultimately diagnosed as glioblastoma lack contrast enhancement and have a 'low-grade appearance' on imaging (non-CE glioblastoma). We aimed to (a) volumetrically define the value of non-CE tumor resection in the absence of contrast enhancement, and to (b) delineate outcome differences between glioblastoma patients with and without contrast enhancement. METHODS: The RANO resect group retrospectively compiled a global, eight-center cohort of patients with newly diagnosed glioblastoma per WHO 2021 classification. The associations between postoperative tumor volumes and outcome were analyzed. Propensity score-matched analyses were constructed to compare glioblastomas with and without contrast enhancement. RESULTS: Among 1323 newly diagnosed IDH-wildtype glioblastomas, we identified 98 patients (7.4%) without contrast enhancement. In such patients, smaller postoperative tumor volumes were associated with more favorable outcome. There was an exponential increase in risk for death with larger residual non-CE tumor. Accordingly, extensive resection was associated with improved survival compared to lesion biopsy. These findings were retained on a multivariable analysis adjusting for demographic and clinical markers. Compared to CE glioblastoma, patients with non-CE glioblastoma had a more favorable clinical profile and superior outcome as confirmed in propensity score analyses by matching the patients with non-CE glioblastoma to patients with CE glioblastoma using a large set of clinical variables. CONCLUSIONS: The absence of contrast enhancement characterizes a less aggressive clinical phenotype of IDH-wildtype glioblastomas. Maximal resection of non-CE tumors has prognostic implications and translates into favorable outcome.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Prognóstico , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...