Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19489, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945636

RESUMO

Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-ß+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.


Assuntos
Lactococcus lactis , Síndrome de Sjogren , Feminino , Animais , Camundongos , Síndrome de Sjogren/genética , Síndrome de Sjogren/terapia , Escherichia coli , Lactococcus lactis/genética , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37676726

RESUMO

Sjögren's Disease (SjD) is a systemic autoimmune disease characterized by lymphocytic inflammation of the lacrimal and salivary glands (SG), dry eyes and mouth, and systemic symptoms. SARS-CoV-2 may trigger the development or progression of autoimmune diseases. To test this, we used a mouse model of SARS-CoV-2 infection and convalescent patients' blood and SG in order to understand the development of SjD-like autoimmunity after infection. First, SARS-CoV-2-infected human angiotensin-converting enzyme 2 (ACE2) transgenic mice exhibited decreased salivation, elevated antinuclear antibodies (ANA), and lymphocytic infiltration in the lacrimal and SG. The sera from patients with COVID-19 sera showed increased ANA (i.e., anti-SSA [Sjögren's-syndrome-related antigen A]/anti-Ro52 and anti-SSB [SS-antigen B]/anti-La). Male patients showed elevated anti-SSA compared with female patients, and female patients exhibited diverse ANA patterns. SG biopsies from convalescent COVID-19 patients were microscopically similar to SjD SG with focal lymphocytic infiltrates in 4 of 6 patients and 2 of 6 patients exhibiting focus scores of at least 2. Lastly, monoclonal antibodies produced in recovered patients blocked ACE2/spike interaction and cross-reacted with nuclear antigens. Our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD-affected SGs were histologically indistinguishable from convalescent COVID-19 patients. The results implicate that SARS-CoV-2 could be an environmental trigger for SjD.


Assuntos
COVID-19 , Síndrome de Sjogren , Humanos , Camundongos , Masculino , Feminino , Animais , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Camundongos Transgênicos , Fenótipo
3.
Front Genet ; 14: 1159109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408774

RESUMO

T cell receptors (TCR) play a vital role in the immune system's ability to recognize and respond to foreign antigens, relying on the highly polymorphic rearrangement of TCR genes. The recognition of autologous peptides by adaptive immunity may lead to the development and progression of autoimmune diseases. Understanding the specific TCR involved in this process can provide insights into the autoimmune process. RNA-seq (RNA sequencing) is a valuable tool for studying TCR repertoires by providing a comprehensive and quantitative analysis of the RNA transcripts. With the development of RNA technology, transcriptomic data must provide valuable information to model and predict TCR and antigen interaction and, more importantly, identify or predict neoantigens. This review provides an overview of the application and development of bulk RNA-seq and single-cell (SC) RNA-seq to examine the TCR repertoires. Furthermore, discussed here are bioinformatic tools that can be applied to study the structural biology of peptide/TCR/MHC (major histocompatibility complex) and predict antigenic epitopes using advanced artificial intelligence tools.

4.
medRxiv ; 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36324812

RESUMO

Objectives: Sjögren's Disease (SjD) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration and the development of dry eyes and dry mouth resulting from the secretory dysfunction of the exocrine glands. SARS-CoV-2 may trigger the development or progression of autoimmune diseases, as evidenced by increased autoantibodies in patients and the presentation of cardinal symptoms of SjD. The objective of the study was to determine whether SARS-CoV-2 induces the signature clinical symptoms of SjD. Methods: The ACE2-transgenic mice were infected with SARS-CoV-2. SJD profiling was conducted. COVID-19 patients' sera were examined for autoantibodies. Clinical evaluations of convalescent COVID-19 subjects, including minor salivary gland (MSG) biopsies, were collected. Lastly, monoclonal antibodies generated from single B cells of patients were interrogated for ACE2/spike inhibition and nuclear antigens. Results: Mice infected with the virus showed a decreased saliva flow rate, elevated antinuclear antibodies (ANAs) with anti-SSB/La, and lymphocyte infiltration in the lacrimal and salivary glands. Sera of COVID-19 patients showed an increase in ANA, anti-SSA/Ro52, and anti-SSB/La. The male patients showed elevated levels of anti-SSA/Ro52 compared to female patients, and female patients had more diverse ANA patterns. Minor salivary gland biopsies of convalescent COVID-19 subjects showed focal lymphocytic infiltrates in four of six subjects, and 2 of 6 subjects had focus scores >2. Lastly, we found monoclonal antibodies produced in recovered patients can both block ACE2/spike interaction and recognize nuclear antigens. Conclusion: Overall, our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD salivary glands were histologically indistinguishable from convalescent COVID-19 subjects. The results potentially implicate that SARS-CoV-2 could be an environmental trigger for SjD. Key Messages: What is already known about this subject?SAR-CoV-2 has a tropism for the salivary glands. However, whether the virus can induce clinical phenotypes of Sjögren's disease is unknown.What does this study add?Mice infected with SAR-CoV-2 showed loss of secretory function, elevated autoantibodies, and lymphocyte infiltration in glands.COVID-19 patients showed an increase in autoantibodies. Monoclonal antibodies produced in recovered patients can block ACE2/spike interaction and recognize nuclear antigens.Minor salivary gland biopsies of some convalescent subjects showed focal lymphocytic infiltrates with focus scores.How might this impact on clinical practice or future developments?Our data provide strong evidence for the role of SARS-CoV-2 in inducing Sjögren's disease-like phenotypes.Our work has implications for how patients will be diagnosed and treated effectively.

5.
Arthritis Res Ther ; 23(1): 99, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823920

RESUMO

BACKGROUND: Sjögren's syndrome (SjS), one of the most common autoimmune diseases, impacts millions of people annually. SjS results from autoimmune attack on exocrine (salivary and lacrimal) glands, and women are nine times more likely to be affected than men. To date, no vaccine or therapeutic exists to treat SjS, and patients must rely on lifelong therapies to alleviate symptoms. METHODS: Oral treatment with the adhesin from enterotoxigenic Escherichia coli colonization factor antigen I (CFA/I) fimbriae protects against several autoimmune diseases in an antigen (Ag)-independent manner. Lactococcus lactis, which was recently adapted to express CFA/I fimbriae (LL-CFA/I), effectively suppresses inflammation by the induction of infectious tolerance via Ag-specific regulatory T cells (Tregs), that produce IL-10 and TGF-ß. To test the hypothesis that CFA/I fimbriae can offset the development of inflammatory T cells via Treg induction, oral treatments with LL-CFA/I were performed on the spontaneous, genetically defined model for SjS, C57BL/6.NOD-Aec1Aec2 mice to maintain salivary flow. RESULTS: Six-week (wk)-old C57BL/6.NOD-Aec1Aec2 mice were orally dosed with LL-CFA/I and treated every 3 wks; control groups were given L. lactis vector or PBS. LL-CFA/I-treated mice retained salivary flow up to 28 wks of age and showed significantly reduced incidence of inflammatory infiltration into the submandibular and lacrimal glands relative to PBS-treated mice. A significant increase in Foxp3+ and IL-10- and TGF-ß-producing Tregs was observed. Moreover, LL-CFA/I significantly reduced the expression of proinflammatory cytokines, IL-6, IL-17, GM-CSF, and IFN-γ. Adoptive transfer of CD4+ T cells from LL-CFA/I-treated, not LL vector-treated mice, restored salivary flow in diseased SjS mice. CONCLUSION: These data demonstrate that oral LL-CFA/I reduce or halts SjS progression, and these studies will provide the basis for future testing in SjS patients.


Assuntos
Escherichia coli Enterotoxigênica , Lactococcus lactis , Síndrome de Sjogren , Animais , Modelos Animais de Doenças , Proteínas de Fímbrias , Humanos , Lactococcus lactis/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Modelos Genéticos , Síndrome de Sjogren/genética , Linfócitos T Reguladores
6.
Adv Exp Med Biol ; 1255: 29-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32949388

RESUMO

T cells recognize peptides bound to major histocompatibility complex (MHC) class I and class II molecules at the cell surface. This recognition is accomplished by the expression of T cell receptors (TCR) which are required to be diverse and adaptable in order to accommodate the various and vast number of antigens presented on the MHCs. Thus, determining TCR repertoires of effector T cells is necessary to understand the immunological process in responding to cancer progression, infection, and autoimmune development. Furthermore, understanding the TCR repertoires will provide a solid framework to predict and test the antigen which is more critical in autoimmunity. However, it has been a technical challenge to sequence the TCRs and provide a conceptual context in correlation to the vast number of TCR repertoires in the immunological system. The exploding field of single-cell sequencing has changed how the repertoires are being investigated and analyzed. In this review, we focus on the biology of TCRs, TCR signaling and its implication in autoimmunity. We discuss important methods in bulk sequencing of many cells. Lastly, we explore the most pertinent platforms in single-cell sequencing and its application in autoimmunity.


Assuntos
Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência , Análise de Célula Única , Animais , Autoimunidade/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Sci Rep ; 10(1): 2967, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076051

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease, with only palliative treatments available. Recent work has suggested that increased bone morphogenetic protein 6 (BMP6) expression could alter cell signaling in the salivary gland (SG) and result in the associated salivary hypofunction. We examined the prevalence of elevated BMP6 expression in a large cohort of pSS patients and tested the therapeutic efficacy of BMP signaling inhibitors in two pSS animal models. Increased BMP6 expression was found in the SGs of 54% of pSS patients, and this increased expression was correlated with low unstimulated whole saliva flow rate. In mouse models of SS, inhibition of BMP6 signaling reduced phosphorylation of SMAD1/5/8 in the mouse submandibular glands, and led to a recovery of SG function and a decrease in inflammatory markers in the mice. The recovery of SG function after inhibition of BMP6 signaling suggests cellular plasticity within the salivary gland and a possibility for therapeutic intervention that can reverse the loss of function in pSS.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Proteína Morfogenética Óssea 6/metabolismo , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Quinolinas/administração & dosagem , Glândulas Salivares/patologia , Síndrome de Sjogren/tratamento farmacológico , Receptores de Ativinas Tipo I/metabolismo , Adulto , Idoso , Animais , Proteína Morfogenética Óssea 6/análise , Proteína Morfogenética Óssea 6/genética , Linhagem Celular , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Saliva/imunologia , Saliva/metabolismo , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Glândulas Salivares/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Síndrome de Sjogren/fisiopatologia , Proteínas Smad Reguladas por Receptor/metabolismo , Adulto Jovem
8.
Adv Exp Med Biol ; 1068: 89-102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29943298

RESUMO

Since the discovery of mouse hybridoma technology by Kohler and Milstein in 1975, significant progress has been made in monoclonal antibody production. Advances in B cell immortalization and phage display technologies have generated a myriad of valuable monoclonal antibodies for diagnosis and treatment. Technological breakthroughs in various fields of 'omics have shed crucial insights into cellular heterogeneity of a biological system in which the functional individuality of a single cell must be considered. Based on this important concept, remarkable discoveries in single-cell analysis have made in identifying and isolating functional B cells that produce beneficial therapeutic monoclonal antibodies. In this review, we will discuss three traditional methods of antibody discovery. Recent technological platforms for single-cell antibody discovery will be reviewed. We will discuss the application of the single-cell analysis in finding therapeutic antibodies for human immunodeficiency virus and emerging Zika arbovirus.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Análise de Célula Única/métodos , Infecção por Zika virus/tratamento farmacológico , Animais , Descoberta de Drogas , HIV/genética , HIV/fisiologia , Humanos , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/virologia
9.
Clin Immunol ; 192: 58-67, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679709

RESUMO

Primary Sjögren's syndrome (pSS) is an autoimmune disease in which the underlying cause has yet to be elucidated. The main objective of this study was to determine the T cell receptor (TCR) repertoires of individual infiltrating T helper (Th)-1 and 17 cells of pSS patients using single-cell analysis. Single-cell analysis of ex-vivo infiltrating T cells demonstrated that pSS patients had higher frequencies of activated Th17 cells. Single-cell TCR sequencing revealed that TCRß variable (TRBV)3-1/joint (J)1-2 (CLFLSMSACVW) and TRBV20-1/J1-1 (SVGSTAIPP*T) were expressed by activated Th1 and Th17 cells in both cohorts. Uniquely, TCRα variable (TRAV)8-2/J5 (VVSDTVLETAGE) was expressed by Th1 cells present only in patients and complementarity-determining region (CDR)3α-specific motif (LSTD*E) present in both Th1/Th17 cells. The study demonstrates that both activated Th1 and Th17 cells of pSS patients showed restricted clonal diversities of which two CDR3 motifs were present in controls and patients, with another two motifs unique to pSS.


Assuntos
Análise de Célula Única/métodos , Síndrome de Sjogren/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Idoso , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Estudos de Coortes , Feminino , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo
10.
Sci Rep ; 7(1): 12512, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970488

RESUMO

The development of Sjögren's syndrome (SjS) is a dynamic and temporal process with a female predilection. Following the initial influx of immune cells, T cell clusters develop, accelerating the pathology in the salivary glands. Proinflammatory cytokines, IFN-γ and IL-17A, produced by T cells contribute synergistically to the disease. In this study, we examined the sexual dimorphism in cellular infiltrates of the salivary glands by using functional single-cell microengraving analysis. Using high-throughput sequencing, we investigated the clonal diversity of the T cell receptors (TCRs) of infiltrating IFN-γ and IL-17A-producing T cells in male and female SjS-susceptible (SjSs) C57BL/6.NOD-Aec1Aec2 mice. There were elevated frequencies of IFN-γ and IL-17A-producing effector T cell populations in female SjSS mice compared to male SjSS mice. MEME analysis shows high frequency and unique, sexually dimorphic motifs in the TCR hypervariable regions in the SjSS mice. Male mice selected for TRAV8/TRAJ52 (CATDLNTGANTGKLTFG) TCR genes in Th1 cells and TRBV16/(TRBD1/2)TRBJ1-7 (CGGKRRLESIFR) in Th1 and Th17 cells. Female SjSS mice selected for TRAV8/TRAJ52 (CATDLNTGANTGKLTFG), TRAV13D-2/TRAJ23 (CVYLEHHFE), and TRBV23/(TRBD2)TRBJ2-2 (CRKLHSCATCALNFL) in Th1 cells. These findings suggest that there is an elevated prevalence of pathogenic effector T cells in the glands with a sexually dimorphic selection bias of TCR repertoires.


Assuntos
Interferon gama/genética , Interleucina-17/genética , Glândulas Salivares/imunologia , Síndrome de Sjogren/genética , Animais , Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/imunologia , Interleucina-17/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Caracteres Sexuais , Análise de Célula Única , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th1/imunologia , Células Th17/imunologia
11.
Sci Rep ; 6: 38717, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958291

RESUMO

Interleukin (IL)-17 is one of the critical inflammatory cytokines that plays a direct role in development of Sjögren's syndrome (SjS), a systemic autoimmune disease characterized by a progressive chronic attack against the exocrine glands. The expression levels of IL-17 are correlated with a number of essential clinical parameters such as focus score and disease duration in human patients. Significantly immunological differences of Th17 cells were detected at the onset of clinical disease in female SjS mice compared to males. To further define the role of IL-17 in SjS and elucidate its involvement in the sexual dimorphism, we examined the systemic effect of IL-17 by genetically ablating Il-17 in the C57BL/6.NOD-Aec1Aec2, spontaneous SjS murine model. The results indicate that IL-17 is a potent inflammatory molecule in the induction of chemoattractants, cytokines, and glandular apoptosis in males and females. Elimination of IL-17 reduced sialadenitis more drastically in females than males. IL-17 is highly involved in modulating Th2 cytokines and altering autoantibody profiles which has a greater impact on changing plasma cells and germinal center B cell populations in females than males. The result supports a much more important role for IL-17 and demonstrates the sexual dimorphic function of IL-17 in SjS.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Interleucina-17/imunologia , Glândulas Salivares/imunologia , Caracteres Sexuais , Síndrome de Sjogren/imunologia , Células Th2/imunologia , Animais , Linfócitos B/patologia , Modelos Animais de Doenças , Feminino , Centro Germinativo/patologia , Interleucina-17/genética , Masculino , Camundongos , Glândulas Salivares/patologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologia , Células Th2/patologia
12.
Arthritis Res Ther ; 18(1): 107, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184054

RESUMO

BACKGROUND: Anti-SSA/Ro60 and anti-SSB/La are essential serological biomarkers for rheumatic diseases, specifically Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). Currently, laboratory detection technology and platforms are designed with an emphasis on high-throughput methodology; therefore, the relationship of sensitivity with specificity remains a significant area for improvement. In this study, we used single-cell antibody nanowells (SCAN) technology to directly profile individual B cells producing antibodies against specific autoantigens such as SSA/Ro60 and SSB/La. METHODS: Peripheral blood mononuclear cells were isolated using Ficoll gradient. Fluorescently labeled cells were added to fabricated nanowells and imaged using a high-speed epifluorescence microscope. The microengraving process was conducted using printed slides coated with immunoglobulins. Printed slides were hybridized with fluorescence-conjugated immunoglobulin G (IgG), SSA/Ro60, and SSB/La antigens. Microarray spots were analyzed for nanowells with single live B cells that produced antigen-specific autoantibodies. RESULTS: Our results indicate that SCAN can simultaneously detect high frequencies of anti-SSA/Ro60 and anti-SSB/La with a specific IgG isotype in peripheral blood mononuclear cells of patients, as well as measure their individual secretion levels. The data showed that patients with SS and SLE exhibited higher frequency and greater concentration of anti-SSA/Ro60- and anti-SSB/La-producing B cells in the IgG isotype. Furthermore, individual B cells of patients produced higher levels of IgG-specific anti-SSA/Ro60 autoantibody, but not IgG-specific anti-SSB/La autoantibody, compared with healthy control subjects. CONCLUSIONS: These results support the application of SCAN as a robust multiparametric analytical bioassay that can directly measure secretion of autoantibody and accurately report antigen-specific, autoantibody-producing cells.


Assuntos
Autoanticorpos/análise , Biomarcadores/análise , Nanotecnologia/métodos , Doenças Reumáticas/imunologia , Adolescente , Autoanticorpos/imunologia , Autoantígenos/imunologia , Criança , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , RNA Citoplasmático Pequeno/imunologia , Doenças Reumáticas/sangue , Ribonucleoproteínas/imunologia
13.
Biol Open ; 4(11): 1410-9, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26453623

RESUMO

Sjögren's syndrome is a complex autoimmune disease with an array of diverse immunological, genetic and environmental etiologies, making identification of the precise autoimmune mechanism difficult to define. One of the most distinctive aspects of Sjögren's syndrome is the high sexual dimorphism with women affected 10-20 times more than men. It is nearly impossible to study the sexual dimorphic development of Sjögren's syndrome in human patients; therefore it is pertinent to develop an appropriate animal model which resembles human disease. The data indicated that female C57BL/6.NOD-Aec1Aec2 mice developed an earlier onset of sialadenitis with a higher composition of CD3(+) T cells and a 10-fold increase in glandular infiltration of Th17 cells at the onset of clinical disease compared to male mice. Inflammatory Th17 cells of female mice exhibited a stronger proliferation in response to disease-specific antigen than their male counterpart. At the clinical disease stage, altered autoantibody patterns can be detected in females whereas they are seldom observed in male C57BL/6.NOD-Aec1Aec2 mice. Interestingly, male C57BL/6.NOD-Aec1Aec2 mice developed an earlier loss of secretory function, despite the fact that female C57BL/6.NOD-Aec1Aec2 mice exhibited a more rapid secretory loss. This data indicates the strong sexual dimorphism in the SjS-susceptible C57BL/6.NOD-Aec1Aec2 animal model, making it an appropriate animal model to examine human disease.

15.
Expert Rev Clin Immunol ; 10(4): 469-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24506531

RESUMO

Sjögren's syndrome (SjS) is a complex chronic autoimmune disease of multifactorial etiology that results in eventual loss of secretory function in the exocrine glands. The challenges towards finding a therapeutic prevention or treatment for SjS are due primarily to a lack of understanding in the pathophysiological and clinical progression of the disease. In order to circumnavigate this problem, there is a need for appropriate animal models that resemble the major phenotypes of human SjS and deliver a clear underlying biological or molecular mechanism capable of defining various aspects for the disease. Here, we present an overview of SjS mouse models that are providing insight into the autoimmune process of SjS and advance our focus on potential diagnostic and therapeutic targets.


Assuntos
Modelos Animais de Doenças , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Animais , Humanos , Camundongos
16.
Artigo em Inglês | MEDLINE | ID: mdl-26246960

RESUMO

Primary Sjögren's Syndrome (pSjS) is an autoimmune disease characterized by sicca (xerophthalmia or xerostomia) symptoms, anti-SS-A (Ro) or anti-SS-B (La) autoantibodies, and lymphocytic infiltrates in the exocrine glands. Disease incidence is estimated to be 0.1-3% of the general population with 0.4-3.1 million individuals in the US with women being nine times more likely to be afflicted with SjS than men. The frequency continues to rise accompanied with the multi-factorial etiology making it a challenging disease to manage and treat. Treatment of this disease remains problematic due to the lack of therapeutic treatments relying on replacement therapies such as artificial saliva and eye lubricants or immunosuppressive agents. To further complicate the management of the disease, there are number of multi-systemic manifestations specifically peripheral neuropathy associated with later stage of disease onset. Increasingly, there is mounting evidence that suggests the involvement of central nervous system. It remains to be determined the underlying cause and effect of the dysregulated immune response and the neuropathy associated with SjS. In this review, we provided an in-depth look at key neurological dysfunctions documented to occur in pSjS. Specifically, we discussed the prevalence, symptomology, and current treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...