RESUMO
During infection Mycobacterium tuberculosis (Mtb) forms physiologically distinct subpopulations that are recalcitrant to treatment and undetectable using standard diagnostics. These difficult to culture or differentially culturable (DC) Mtb are revealed in liquid media, their revival is often stimulated by resuscitation-promoting factors (Rpf) and prevented by Rpf inhibitors. Here, we investigated the role of nitric oxide (NO) in promoting the DC phenotype. Rpf-dependent DC Mtb were detected following infection of interferon-γ-induced macrophages capable of producing NO, but not when inducible NO synthase was inactivated. After exposure of Mtb to a new donor for sustained NO release (named NOD), the majority of viable cells were Rpf-dependent and undetectable on solid media. Gene expression analyses revealed a broad transcriptional response to NOD, including down-regulation of all five rpf genes. The DC phenotype was partially reverted by over-expression of Rpfs which promoted peptidoglycan remodelling. Thus, NO plays a central role in the generation of Rpf-dependent Mtb, with implications for improving tuberculosis diagnostics and treatments.
Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Óxido Nítrico , Fenótipo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Macrófagos/microbiologia , Macrófagos/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Tuberculose/microbiologia , Humanos , Camundongos , CitocinasRESUMO
A major challenge in tuberculosis (TB) therapeutics is that antibiotic exposure leads to changes in the physiologic state of M. tuberculosis (Mtb) which may enable the pathogen to withstand treatment. While antibiotic-treated Mtb have been evaluated in short-term in vitro experiments, it is unclear if and how long-term in vivo treatment with diverse antibiotics with varying treatment-shortening activity (sterilizing activity) affect Mtb physiologic states differently. Here, we used SEARCH-TB, a pathogen-targeted RNA-sequencing platform, to characterize the Mtb transcriptome in the BALB/c high-dose aerosol infection mouse model following 4-week treatment with three sterilizing and three non-sterilizing antibiotics. Certain transcriptional changes were concordant among most antibiotics, including decreased expression of genes associated with protein synthesis and metabolism, and the induction of certain genes associated with stress responses. However, the magnitude of this concordant response differed between antibiotics. Sterilizing antibiotics rifampin, pyrazinamide, and bedaquiline generated a more quiescent Mtb state than did non-sterilizing antibiotics isoniazid, ethambutol, and streptomycin, as indicated by decreased expression of genes associated with translation, transcription, secretion of immunogenic proteins, metabolism, and cell wall synthesis. Additionally, we identified distinguishing transcriptional effects specific to each antibiotic, indicating that different mechanisms of action induce distinct patterns of cellular injury. In addition to elucidating Mtb physiologic changes associated with antibiotic stress, this study demonstrates the value of SEARCH-TB as a highly granular pharmacodynamic assay that reveals antibiotic effects that are not apparent based on culture alone.
RESUMO
We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.
Assuntos
Proteína de Transporte de Acila , Proteínas de Bactérias , Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/genética , Macrófagos/microbiologia , Macrófagos/metabolismo , Virulência , Regulação Bacteriana da Expressão Gênica , Tuberculose/microbiologia , Lipídeos/químicaRESUMO
Bacteria use population heterogeneity, the presence of more than one phenotypic variant in a clonal population, to endure diverse environmental challenges - a 'bet-hedging' strategy. Phenotypic variants have been described in many bacteria, but the phenomenon is not well-understood in mycobacteria, including the environmental factors that influence heterogeneity. Here, we describe three reproducible morphological variants in M. smegmatis - smooth, rough, and an intermediate morphotype that predominated under typical laboratory conditions. M. abscessus has two recognized morphotypes, smooth and rough. Interestingly, M. tuberculosis exists in only a rough form. The shift from smooth to rough in both M. smegmatis and M. abscessus was observed over time in extended static culture, however the frequency of the rough morphotype was high in pellicle preparations compared to planktonic culture, suggesting a role for an aggregated microenvironment in the shift to the rough form. Differences in growth rate, biofilm formation, cell wall composition, and drug tolerance were noted among M. smegmatis and M. abscessus variants. Deletion of the global regulator lsr2 shifted the M. smegmatis intermediate morphotype to a smooth form but did not fully phenocopy the naturally generated smooth morphotype, indicating Lsr2 is likely downstream of the initiating regulatory cascade that controls these morphotypes. Rough forms typically correlate with higher invasiveness and worse outcomes during infection and our findings indicate the shift to this rough form is promoted by aggregation. Our findings suggest that mycobacterial population heterogeneity, reflected in colony morphotypes, is a reproducible, programmed phenomenon that plays a role in adaptation to unique environments and this heterogeneity may influence infection progression and response to treatment.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Mycobacterium abscessus/genética , Mycobacterium smegmatis/genética , Infecções por Mycobacterium não Tuberculosas/microbiologiaRESUMO
To address the ongoing global tuberculosis crisis, there is a need for shorter, more effective treatments. A major reason why tuberculosis requires prolonged treatment is that, following a short initial phase of rapid killing, the residual Mycobacterium tuberculosis withstands drug killing. Because existing methods lack sensitivity to quantify low-abundance mycobacterial RNA in drug-treated animals, cellular adaptations of drug-exposed bacterial phenotypes in vivo remain poorly understood. Here, we used a novel RNA-seq method called SEARCH-TB to elucidate the Mycobacterium tuberculosis transcriptome in mice treated for up to 28 days with standard doses of isoniazid, rifampin, pyrazinamide, and ethambutol. We compared murine results with in vitro SEARCH-TB results during exposure to the same regimen. Treatment suppressed genes associated with growth, transcription, translation, synthesis of rRNA proteins, and immunogenic secretory peptides. Bacteria that survived prolonged treatment appeared to transition from ATP-maximizing respiration toward lower-efficiency pathways and showed modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pump expression. Although the pre-treatment in vivo and in vitro transcriptomes differed profoundly, genes differentially expressed following treatment in vivo and in vitro were similar, with differences likely attributable to immunity and drug pharmacokinetics in mice. These results reveal cellular adaptations of Mycobacterium tuberculosis that withstand prolonged drug exposure in vivo, demonstrating proof of concept that SEARCH-TB is a highly granular pharmacodynamic readout. The surprising finding that differential expression is concordant in vivo and in vitro suggests that insights from transcriptional analyses in vitro may translate to the mouse. IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.
RESUMO
Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Camundongos Endogâmicos C3H , Tuberculose/tratamento farmacológico , Pulmão/microbiologia , Camundongos EndogâmicosRESUMO
Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.
RESUMO
The sigmoid Emax model was used to describe the rRNA synthesis ratio (RS ratio) response of Mycobacterium tuberculosis to antimicrobial concentration. RS-Emax measures the maximal ability of a drug to inhibit the RS ratio and can be used to rank-order drugs based on their RS ratio effect. RS-EC90 is the concentration needed to achieve 90% of the RS-Emax, which may guide dose selection to achieve a maximal RS ratio effect in vivo.
Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Benchmarking , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Anti-Infecciosos/farmacologia , Mycobacterium tuberculosis/genéticaRESUMO
Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/tratamento farmacológico , Tuberculose/microbiologiaRESUMO
There is a critical need for improved pharmacodynamic markers for use in human tuberculosis (TB) drug trials. Pharmacodynamic monitoring in TB has conventionally used culture or molecular methods to enumerate the burden of Mycobacterium tuberculosis organisms in sputum. A recently proposed assay called the rRNA synthesis (RS) ratio measures a fundamentally novel property, how drugs impact ongoing bacterial rRNA synthesis. Here, we evaluated RS ratio as a potential pharmacodynamic monitoring tool by testing pretreatment sputa from 38 Ugandan adults with drug-susceptible pulmonary TB. We quantified the RS ratio in paired pretreatment sputa and evaluated the relationship between the RS ratio and microbiologic and molecular markers of M. tuberculosis burden. We found that the RS ratio was highly repeatable and reproducible in sputum samples. The RS ratio was independent of M. tuberculosis burden, confirming that it measures a distinct new property. In contrast, markers of M. tuberculosis burden were strongly associated with each other. These results indicate that the RS ratio is repeatable and reproducible and provides a distinct type of information from markers of M. tuberculosis burden. IMPORTANCE This study takes a major next step toward practical application of a novel pharmacodynamic marker that we believe will have transformative implications for tuberculosis. This article follows our recent report in Nature Communications that an assay called the rRNA synthesis (RS) ratio indicates the treatment-shortening of drugs and regimens. Distinct from traditional measures of bacterial burden, the RS ratio measures a fundamentally novel property, how drugs impact ongoing bacterial rRNA synthesis.
Assuntos
Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/genética , RNA Ribossômico/genética , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Mycobacterium tuberculosis/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo , Escarro/química , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismoRESUMO
There is urgent need for new drug regimens that more rapidly cure tuberculosis (TB). Existing TB drugs and regimens vary in treatment-shortening activity, but the molecular basis of these differences is unclear, and no existing assay directly quantifies the ability of a drug or regimen to shorten treatment. Here, we show that drugs historically classified as sterilizing and non-sterilizing have distinct impacts on a fundamental aspect of Mycobacterium tuberculosis physiology: ribosomal RNA (rRNA) synthesis. In culture, in mice, and in human studies, measurement of precursor rRNA reveals that sterilizing drugs and highly effective drug regimens profoundly suppress M. tuberculosis rRNA synthesis, whereas non-sterilizing drugs and weaker regimens do not. The rRNA synthesis ratio provides a readout of drug effect that is orthogonal to traditional measures of bacterial burden. We propose that this metric of drug activity may accelerate the development of shorter TB regimens.
Assuntos
Antituberculosos/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Precursores de RNA/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/genética , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/microbiologiaRESUMO
Sigma factor C (SigC) contributes to Mycobacterium tuberculosis virulence in various animal models, but the stress response coordinated by this transcription factor was undefined. The results presented here indicate that SigC prevents copper starvation. Whole genome expression studies demonstrate short-term (4-h) induction of sigC, controlled from a tetracycline-inducible promoter, upregulates ctpB and genes in the nonribosomal peptide synthase (nrp) operon. These genes are expressed at higher levels after 48-h sigC induction, but also elevated are genes encoding copper-responsive regulator RicR and RicR-regulated copper toxicity response operon genes rv0846-rv0850, suggesting prolonged sigC induction results in excessive copper uptake. No growth and global transcriptional differences are observed between a sigC null mutant relative to its parent strain in 7H9 medium. In a copper-deficient medium, however, growth of the sigC deletion strain lags the parent, and 40 genes (including those in the nrp operon) are differentially expressed. Copper supplementation reverses the growth defect and silences most transcriptional differences. Together, these data support SigC as a transcriptional regulator of copper acquisition when the metal is scarce. Attenuation of sigC mutants in severe combined immunodeficient mice is consistent with an inability to overcome innate host defenses that sequester copper ions to deprive invading microbes of this essential micronutrient.
Assuntos
Cobre/farmacologia , Imunidade/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Fator sigma/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Sulfato de Cobre/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Camundongos SCID , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fenótipo , Transcrição Gênica/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genéticaRESUMO
Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi-drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H-NS-like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H-NS, Lsr2 binds DNA in sequence-dependent and non-specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA-binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP-sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Bactérias/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Treonina/metabolismo , Fatores de Transcrição/metabolismoRESUMO
A growing body of research suggests bacterial metabolism and membrane bioenergetics affect the lethality of a broad spectrum of antibiotics. Electrochemical gradients spanning energy-transducing membranes are the foundation of the chemiosmotic hypothesis and are essential for life; accordingly, their dysfunction appears to be a critical factor in bacterial death. Proton flux across energy-transducing membranes is central for cellular homeostasis as vectorial proton translocation generates a proton motive force used for ATP synthesis, pH homeostasis, and maintenance of solute gradients. Our recent investigations indicate that maintenance of pH homeostasis is a critical factor in antibiotic killing and suggest an imbalance in proton flux initiates disruptions in chemiosmotic gradients that lead to cell death. The complex and interconnected relationships between electron transport systems, central carbon metabolism, oxidative stress generation, pH homeostasis, and electrochemical gradients provide challenging obstacles to deciphering the roles for each of these processes in antibiotic lethality. In this chapter, we will present evidence for the pH homeostasis hypothesis of antibiotic lethality that bactericidal activity flows from disruption of cellular energetics and loss of chemiosmotic homeostasis. A holistic understanding of the interconnection of energetic processes and antibiotic activity may direct future research toward the development of more effective therapeutic interventions.
Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacosRESUMO
Mycobacterium tuberculosis is a strict aerobe capable of prolonged survival in the absence of oxygen. We investigated the ability of anaerobic M. tuberculosis to counter challenges to internal pH homeostasis in the absence of aerobic respiration, the primary mechanism of proton efflux for aerobic bacilli. Anaerobic M. tuberculosis populations were markedly impaired for survival under a mildly acidic pH relative to standard culture conditions. An acidic environmental pH greatly increased the susceptibilities of anaerobic bacilli to the collapse of the proton motive force by protonophores, to antimicrobial compounds that target entry into the electron transport system, and to small organic acids with uncoupling activity. However, anaerobic bacilli exhibited high tolerance against these challenges at a near-neutral pH. At a slightly alkaline pH, which was near the optimum intracellular pH, the addition of protonophores even improved the long-term survival of bacilli. Although anaerobic M. tuberculosis bacilli under acidic conditions maintained 40% lower ATP levels than those of bacilli under standard culture conditions, ATP loss alone could not explain the drop in viability. Protonophores decreased ATP levels by more than 90% regardless of the extracellular pH but were bactericidal only under acidic conditions, indicating that anaerobic bacilli could survive an extreme ATP loss provided that the external pH was within viable intracellular parameters. Acidic conditions drastically decreased the anaerobic survival of a DosR mutant, while an alkaline environment improved the survival of the DosR mutant. Together, these findings indicate that intracellular acidification is a primary challenge for the survival of anaerobic M. tuberculosis and that the DosR regulon plays a critical role in sustaining internal pH homeostasis.IMPORTANCE During infection, M. tuberculosis bacilli are prevalent in environments largely devoid of oxygen, yet the factors that influence the survival of these severely growth-limited and metabolically limited bacilli remain poorly understood. We determined how anaerobic bacilli respond to fluctuations in environmental pH and observed that these bacilli were highly susceptible to stresses that promoted internal acidic stress, whereas conditions that promoted an alkaline internal pH promoted long-term survival even during severe ATP depletion. The DosR regulon, a major regulator of general hypoxic stress, played an important role in maintaining internal pH homeostasis under anaerobic conditions. Together, these findings indicate that in the absence of aerobic respiration, protection from internal acidification is crucial for long-term M. tuberculosis survival.
Assuntos
Bactérias Anaeróbias/metabolismo , Bactérias Anaeróbias/fisiologia , Proteínas de Bactérias/metabolismo , Morte Celular/fisiologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Regulon/fisiologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Bacillus/metabolismo , Bacillus/fisiologia , Respiração Celular/fisiologia , Transporte de Elétrons/fisiologia , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Mycobacterium tuberculosis/efeitos dos fármacos , Oxigênio/metabolismoRESUMO
BACKGROUND: It is unknown whether immunosuppression influences the physiologic state of Mycobacterium tuberculosis in vivo. We evaluated the impact of host immunity by comparing M. tuberculosis and human gene transcription in sputum between human immunodeficiency virus (HIV)-infected and uninfected patients with tuberculosis. METHODS: We collected sputum specimens before treatment from Gambians and Ugandans with pulmonary tuberculosis, revealed by positive results of acid-fast bacillus smears. We quantified expression of 2179 M. tuberculosis genes and 234 human immune genes via quantitative reverse transcription-polymerase chain reaction. We summarized genes from key functional categories with significantly increased or decreased expression. RESULTS: A total of 24 of 65 patients with tuberculosis were HIV infected. M. tuberculosis DosR regulon genes were less highly expressed among HIV-infected patients with tuberculosis than among HIV-uninfected patients with tuberculosis (Gambia, P < .0001; Uganda, P = .037). In profiling of human genes from the same sputa, HIV-infected patients had 3.4-fold lower expression of IFNG (P = .005), 4.9-fold higher expression of ARG1 (P = .0006), and 3.4-fold higher expression of IL10 (P = .0002) than in HIV-uninfected patients with tuberculosis. CONCLUSIONS: M. tuberculosis in HIV-infected patients had lower expression of the DosR regulon, a critical metabolic and immunomodulatory switch induced by NO, carbon monoxide, and hypoxia. Our human data suggest that decreased DosR expression may result from alternative pathway activation of macrophages, with consequent decreased NO expression and/or by poor granuloma formation with consequent decreased hypoxic stress.
Assuntos
Adaptação Fisiológica/imunologia , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Adulto , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , Gâmbia , Granuloma/genética , Granuloma/imunologia , Granuloma/microbiologia , Infecções por HIV/genética , Humanos , Hipóxia/imunologia , Hipóxia/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Óxidos de Nitrogênio/imunologia , Proteínas Quinases/genética , Regulon/genética , Regulon/imunologia , Escarro/microbiologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , UgandaRESUMO
The Mycobacterium tuberculosis genome encodes two complete high-affinity Pst phosphate-specific transporters. We previously demonstrated that a membrane-spanning component of one Pst system, PstA1, was essential both for M. tuberculosis virulence and for regulation of gene expression in response to external phosphate availability. To determine if the alternative Pst system is similarly required for virulence or gene regulation, we constructed a deletion of pstA2. Transcriptome analysis revealed that PstA2 is not required for regulation of gene expression in phosphate-replete growth conditions. PstA2 was also dispensable for replication and virulence of M. tuberculosis in a mouse aerosol infection model. However, a ΔpstA1ΔpstA2 double mutant was attenuated in mice lacking the cytokine interferon-gamma, suggesting that M. tuberculosis requires high-affinity phosphate transport to survive phosphate limitation encountered in the host. Surprisingly, ΔpstA2 bacteria were more resistant to acid stress in vitro. This phenotype is intrinsic to the alternative Pst transporter since a ΔpstS1 mutant exhibited similar acid resistance. Our data indicate that the two M. tuberculosis Pst transporters have distinct physiological functions, with the PstA1 transporter being specifically involved in phosphate sensing and gene regulation while the PstA2 transporter influences survival in acidic conditions.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosfatos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adaptação Biológica , Animais , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Ordem dos Genes , Genes Bacterianos , Concentração de Íons de Hidrogênio , Imunidade Inata , Interferon gama/metabolismo , Camundongos , Mycobacterium tuberculosis/patogenicidade , Deleção de Sequência , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/mortalidade , Virulência/genéticaRESUMO
Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo.
Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Monitoramento de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Proteínas Quinases/metabolismo , RNA Bacteriano/análise , RNA Mensageiro/análise , Manejo de Espécimes/métodos , Transcrição Gênica/efeitos dos fármacosRESUMO
BALB/c and Swiss mice are routinely used to validate the effectiveness of tuberculosis drug regimens, although these mouse strains fail to develop human-like pulmonary granulomas exhibiting caseous necrosis. Microenvironmental conditions within human granulomas may negatively impact drug efficacy, and this may not be reflected in non-necrotizing lesions found within conventional mouse models. The C3HeB/FeJ mouse model has been increasingly utilized as it develops hypoxic, caseous necrotic granulomas which may more closely mimic the pathophysiological conditions found within human pulmonary granulomas. Here, we examined the treatment response of BALB/c and C3HeB/FeJ mice to bedaquiline (BDQ) and pyrazinamide (PZA) administered singly and in combination. BALB/c mice consistently displayed a highly uniform treatment response to both drugs, while C3HeB/FeJ mice displayed a bimodal response composed of responsive and less-responsive mice. Plasma pharmacokinetic analysis of dissected lesions from BALB/c and C3HeB/FeJ mice revealed that PZA penetrated lesion types from both mouse strains with similar efficiency. However, the pH of the necrotic caseum of C3HeB/FeJ granulomas was determined to be 7.5, which is in the range where PZA is essentially ineffective under standard laboratory in vitro growth conditions. BDQ preferentially accumulated within the highly cellular regions in the lungs of both mouse strains, although it was present at reduced but still biologically relevant concentrations within the central caseum when dosed at 25 mg/kg. The differential treatment response which resulted from the heterogeneous pulmonary pathology in the C3HeB/FeJ mouse model revealed several factors which may impact treatment efficacy, and could be further evaluated in clinical trials.