Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(43): 96926-96937, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584799

RESUMO

Although meteorological conditions play a significant role in air pollution, research on their effects on the relationship between air pollutants is limited. In this study, trends of six criteria air pollutants were investigated from 15 air quality monitoring stations (AQMSs) in Ulsan, a multi-industrial city in South Korea, during 2015-2019. Unlike CO and O3, SO2, NO2, PM10, and PM2.5 showed statistically significant decreasing trends over the period. The companion relationship between PM2.5 and gaseous pollutants was evaluated by their correlations [R (PM2.5-GPs)]. R (PM2.5-NO2) was relatively high at almost all AQMSs, whereas high R (PM2.5-SO2) was observed near the petrochemical industrial complex, suggesting a great influence of local emissions (vehicles and industries). R (PM2.5-CO) and the standardized regression coefficients of CO obtained from the multiple linear regression model were the highest, indicating that combustion processes may significantly contribute to PM2.5. The effect of temperature (T) was more apparent on R (PM2.5-GPs) than that of relative humidity, with significant values under T > 15 °C. Moreover, R (PM2.5-O3) was positive at the T range of 12-18 °C, suggesting that reducing GPs emitted by industrial facilities during May-June may control PM2.5 and O3 in Ulsan. The methodology demonstrated in this study can be further used for a better understanding of the influences of environmental factors on the secondary PM2.5 formation from gaseous precursors and the R (PM2.5-O3).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Material Particulado/análise , Gases , Temperatura , Umidade , Dióxido de Nitrogênio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , República da Coreia , Monitoramento Ambiental/métodos
2.
Environ Sci Process Impacts ; 24(1): 140-151, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34981807

RESUMO

This study identifies the emission source areas for the atmospheric polycyclic aromatic hydrocarbons (PAHs) detected in Ulsan, South Korea. To achieve this, in addition to a conditional bivariate probability function (CBPF), two hybrid receptor models - the three-dimensional potential source contribution function (3D-PSCF) model and the 3D concentration weighted function (3D-CWT) model - were used, both of which adopt trajectory segments within the mixing layer. Notably, the fraction-weighted trajectory (FWT), a combination of PAH gas/particle partitioning with a hybrid receptor model, was introduced for the first time in this study to support the identification of emission source areas using other approaches (i.e., 3D-PSCF, 3D-CWT, and CBPF). Consequently, it was found that gaseous PAHs in Ulsan mostly originated from local emission sources (i.e., transportation and industrial emissions) throughout the year, whereas particulate PAHs were likely to originate from emission sources in China (e.g., Shandong, Hebei, and Liaoning) during spring and winter via long-range transport. However, in summer and fall, the influence of local emissions on particulate PAHs appeared to be stronger. The FWT was able to distinguish between local and distant sources more effectively, especially in summer and fall, i.e., the periods when local sources increased their contribution. This study thus increases the understanding of the long-range transport of PAHs in Northeast Asia, and the novel FWT approach exhibits the potential to be employed in the source area identification of various semi-volatile organic chemicals.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Probabilidade , República da Coreia , Estações do Ano , Compostos Orgânicos Voláteis/análise
3.
Environ Pollut ; 292(Pt B): 118380, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666098

RESUMO

Evaluation for the controlling policy's effectiveness to mitigate criteria air pollutants (CAPs) in South Korea during December 1, 2019-March 31, 2020 is difficult because of its coincidence with the COVID-19 social distancing. In this study, we differentiated the influence of three major driving factors (intensive controlling policy by the government, meteorological conditions, and social distancing) to the CAP variation in Ulsan, the largest industrial city in South Korea. In 2013-2019, the concentrations of PM2.5 (2015-2019), PM10, SO2, and NO2 decreased by 6.7, 1.6, 4.2, and 3.3%/year, respectively, whereas the O3 concentration slightly increased by 0.7%/year. Trend analysis was used to predict the CAP concentrations before (January 1-February 21) and during (February 22-March 31) the social distancing in 2020. The difference between the measured and predicted concentrations was designated as the contribution of the three factors. The controlling policy was the most important driver of the CAP reductions. In particular, its contributions were 94.1% (January 1-February 21) and 87.4% (February 22-March 31) to the PM2.5 decrease. The change in meteorological conditions considerably affected the CAP reductions, with the highest contributions of 35.2% (January 1-February 21) and 39.2% (February 22-March 31) to the O3 decrease. On February 22-March 31, the effects of social distancing were 1.6, 0.6, 1.3, and 1.4% to the reduction of SO2, NO2, PM10, and PM2.5, respectively. Overall, a decrease in the CAP concentrations was apparent during January-March 2020 in Ulsan primarily due to the intensive controlling policies, not by the COVID-19 social distancing.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Humanos , Material Particulado/análise , Políticas , República da Coreia , SARS-CoV-2
4.
Environ Pollut ; 294: 118644, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875266

RESUMO

Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are receiving attention because of their high toxicity compared with parent PAHs. However, the experimental data of their physicochemical properties has been limited. This study proposed the gas chromatographic retention time (GC-RT) technique as an effective alternative one to determine octanol-air partition coefficients (KOA) and sub-cooled liquid vapor pressures (PL) for 11 NPAHs, 10 OPAHs, and 19 parent PAHs. The slopes and intercepts of the linear regressions between temperature versus KOA and PL were provided and can be used to estimate KOA and PL for the 40 targeted compounds at any temperature. The internal energies of phase transfer (ΔUOA) and enthalpies of vaporization (ΔHL) for all targeted compounds were also calculated using the GC-RT technique. High-molecular-weight compounds may release or absorb higher heat energy to transform between different phases. NPAHs and OPAHs had a non-ideal solution behavior with activity in octanol (γoct) in the range of 19-53 and 18-1,078, respectively, which is larger than the unity threshold. A comparison among four groups of PAH derivatives showed that a functional group (nitro-, oxygen-, chloro-, and bromo-) in PAH derivatives increased γoct for corresponding parent PAHs by tens (mono-group) to hundreds of times (di-group). This study suggests that the GC-RT method is applicable for indirectly measuring the physicochemical properties of various groups of organic compounds.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Nitratos , Óxidos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos/análise
5.
Environ Sci Pollut Res Int ; 27(36): 45983-45991, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113059

RESUMO

The outbreak of COVID-19 in Daegu, South Korea, early in 2020 has led this metropolitan city to become one of the major hotspots in the world. This study investigates the association of meteorology and the new daily COVID-19 confirmed cases and the effects of the city lockdown on the variation in criteria air pollutants (CAPs) in Daegu. Ambient temperature and relative humidity were negatively correlated to the new daily cases and played an important role in the spread of COVID-19. Wind speed could enhance the virus transmission through the inhalation of aerosols and/or droplets and contact with fomites. The lockdown has directly decreased the concentrations of CAPs. In particular, reductions of 3.75% (PM10), 30.9% (PM2.5), 36.7% (NO2), 43.7% (CO), and 21.3% (SO2) between the period before and during the outbreak were observed over the entire city. An increase in O3 (71.1%) was affected by natural processes and photochemical formation other than the lockdown effects. The three central districts were the areas most affected by the virus and showed the highest reductions in CAPs (except for O3) during the outbreak. Apart from the influence of the lockdown, the decreasing trend in CAPs may be a result of the actions taken by the government to mitigate air pollutants nationwide since 2019. The results of this study can be useful for government and medical organizations to understand the behavior of the virus in the atmosphere. Further studies are necessary to explore the detailed influences of the lockdown on the environment and public life.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Betacoronavirus , COVID-19 , Cidades , Monitoramento Ambiental , Humanos , Processos Fotoquímicos , República da Coreia/epidemiologia , SARS-CoV-2
6.
Environ Pollut ; 263(Pt A): 114592, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33618474

RESUMO

Atmospheric halogenated polycyclic aromatic hydrocarbons (Halo-PAHs) and parent PAHs were monitored in Ulsan, South Korea for one year (January‒December 2015) to investigate their seasonal patterns, gas/particle partitioning behavior, and the impact of meteorological conditions. The mean concentrations of 24 chlorinated PAHs, 11 brominated PAHs, and 13 parent PAHs in the gaseous and particulate phases were 8.64 and 9.64 pg/m3, 11.6 and 1.62 pg/m3, and 2.17 and 2.40 ng/m3, respectively. Winter had the highest ClPAH and PAH levels, with significant contributions from poly-chlorine groups and high-molecular-weight compounds. However, BrPAHs showed reverse patterns with the highest concentration in summer and the dominant gaseous fraction throughout the year. This finding could be explained by the strong local sources of BrPAHs, related to automobile and petrochemical industries. In contrast, the effects of the temperature inversion layer and atmospheric transport from the outside of Ulsan were more apparent for ClPAHs and PAHs, particularly in winter and spring. Regarding gas/particle partitioning, Halo-PAHs exhibited different seasonal behaviors from those of parent PAHs. The sorption pathway of Halo-PAHs seemed to shift from absorption as the sole dominant mechanism in winter and spring to both adsorption and absorption in summer and fall, while both partitioning mechanisms contributed equally for parent PAHs during the entire year. This study implies that Halo-PAHs and parent PAHs might not share the same atmospheric behavior, possibly due to different characteristics in atmospheric reactions with other chemicals and particle-size distribution. However, there have been limited studies about the formation of Halo-PAHs and their physicochemical properties; hence, further in-depth investigations are of vital importance.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , República da Coreia , Estações do Ano
7.
J Hazard Mater ; 382: 121238, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563090

RESUMO

Some halogenated polycyclic aromatic hydrocarbons (Halo-PAHs) are known to be more toxic than their corresponding parent PAHs, but studies on Halo-PAHs have been somewhat limited. In this study, passive air samplers were used to monitor Halo-PAH and PAH contamination at 20 sampling sites in Ulsan, one of the largest industrial cities in South Korea. The mean concentrations of Σ24 ClPAHs, Σ11 BrPAHs, and Σ13 PAHs were 207 pg/m3, 84 pg/m3, and 26 ng/m3, respectively. Industrial areas displayed higher concentrations of both Halo-PAHs and PAHs than urban and rural areas. Strong correlations between energetically unfavorable Halo-PAHs and their corresponding parent PAHs suggest that the main formation mechanism of Halo-PAHs is not direct halogenation of PAHs. Low molecular weight Halo-PAHs with one halogen atom and their parent PAHs were dominant. The profiles of ClPAHs and BrPAHs in petrochemical, automobile, shipbuilding, and non-ferrous industrial complexes were distinguished. The toxicity equivalency quantities (TEQs) of ClPAHs, BrPAHs, and PAHs at the industrial sites also showed the highest values of 4.2, 0.5, and 18.3 pg-TEQ/m3, respectively, reflecting the high toxicity of Halo-PAHs. To the best of our knowledge, this is the first study reporting atmospheric levels of both ClPAHs and BrPAHs using passive air samplers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...