Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Educ ; 4(2): 421-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070946

RESUMO

A challenge in building the biomedical engineering human factors course at Malawi University of Business and Applied Sciences was integrating meaningful direct experiences with medical products. The instructor also noticed a significant gap between the topics in the course and their surrounding clinical context, a low-income setting. Recognizing that devices should be designed and evaluated in the context of the local users' needs and situations, new hands-on modules were created and implemented in this BME human factors course. Students were asked to critically evaluate and make recommendations to improve the human factors aspects of the software and hardware of the IMPALA, a vital signs monitoring device developed for use in Malawi. Engaging with this medical device, students observed and understood many issues discussed in human factors, including the design of ports, controls, and other user interfaces. The collaboration between the course and the IMPALA project harnessed the local expertise of students to improve the design of a new patient monitoring system. Thus, the IMPALA project itself benefited from this collaboration. Second, students greatly benefited from applying the class concepts to the IMPALA. Students were engaged far more during the interactive components than during the lecture components. Many students successfully translated their knowledge on human factors to their final-year design project.

2.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206440

RESUMO

Biomolecular condensates formed via liquid-liquid phase separation (LLPS) are increasingly being shown to play major roles in cellular self-organization dynamics in health and disease. It is well established that macromolecular crowding has a profound impact on protein interactions, particularly those that lead to LLPS. Although synthetic crowding agents are used during in vitro LLPS experiments, they are considerably different from the highly crowded nucleo-/cytoplasm and the effects of in vivo crowding remain poorly understood. In this work, we applied computational modeling to investigate the effects of macromolecular crowding on LLPS. To include biologically relevant LLPS dynamics, we extended the conventional Cahn-Hilliard model for phase separation by coupling it to experimentally derived macromolecular crowding dynamics and state-dependent reaction kinetics. Through extensive field-theoretic computer simulations, we show that the inclusion of macromolecular crowding results in late-stage coarsening and the stabilization of relatively smaller condensates. At a high crowding concentration, there is an accelerated growth and late-stage arrest of droplet formation, effectively resulting in anomalous labyrinthine morphologies akin to protein gelation observed in experiments. These results not only elucidate the crowder effects observed in experiments, but also highlight the importance of including state-dependent kinetics in LLPS models, and may help in designing further experiments to probe the intricate roles played by LLPS in self-organization dynamics of cells.


Assuntos
Extração Líquido-Líquido/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/isolamento & purificação , Algoritmos , Humanos , Cinética , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...