RESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.
Assuntos
Regulação para Baixo , Antígenos de Histocompatibilidade Classe I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Microglobulina beta-2 , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , MutaçãoRESUMO
[This corrects the article DOI: 10.3389/fmicb.2020.591478.].
RESUMO
Japanese encephalitis virus (JEV) causes acute encephalitis in humans and is of major public health concern in most Asian regions. Dogs are suitable sentinels for assessing the risk of JEV infection in humans. A neutralization test (NT) or an enzyme-linked immunosorbent assay (ELISA) is used for the serological detection of JEV in dogs; however, these tests have several limitations, and, thus, a more convenient and reliable alternative test is needed. In this study, a colloidal gold immunochromatographic strip (ICS), using a purified recombinant EDIII protein, was established for the serological survey of JEV infection in dogs. The results show that the ICSs could specifically detect JEV antibodies within 10 min without cross-reactions with antibodies against other canine viruses. The test strips could detect anti-JEV in serum with dilution up to 640 times, showing high sensitivity. The coincidence rate with the NT test was higher than 96.6%. Among 586 serum samples from dogs in Shanghai examined using the ICS test, 179 (29.98%) were found to be positive for JEV antibodies, and the high seropositivity of JEV in dogs in China was significantly correlated with the season and living environment. In summary, we developed an accurate and economical ICS for the rapid detection of anti-JEV in dog serum samples with great potential for the surveillance of JEV in dogs.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Cães , Animais , Humanos , Coloide de Ouro , China/epidemiologia , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/veterinária , Encefalite Japonesa/epidemiologia , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais , Proteínas RecombinantesRESUMO
Japanese Encephalitis Virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and a NS2B cofactor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in E. coli and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases. The GI NS2B(H)-NS3(pro) was able to cleave the sites at internal C, NS2A/NS2B, NS2B/NS3 and NS3/NS4A junctions that were identical to the sites proteolytically processed by GIII NS2B(H)-NS3(pro). Analysis of the enzymatic activity of recombinant NS2B(H)-NS3(pro) proteases using a model of fluorogenic peptide substrate revealed that the proteolytical processing activity of GIII NS2B(H)-NS3(pro) was significantly higher than that of GI NS2B(H)-NS3(pro). There were eight amino acid variations between GI and GIII NS2B(H)-NS3(pro), which may be responsible for the difference in enzymatic activities between GI and GIII proteases. Therefore, recombinant mutants were generated by exchanging NS2B(H) and NS3(pro) domains between GI and GIII NS2B(H)-NS3(pro) and subjected to protease activity analysis. Substitution of NS2B(H) significantly altered the protease activities, as compared to the parental NS2B(H)-NS3(pro), suggesting that NS2B(H) played an essential role in regulation of NS3(pro) protease activity. To further identify the amino acids responsible for the difference in protease activities, multiple substitution mutants including the individual and combined mutations at the variant residue 55 and 65 of NS2B(H) were generated and subjected to protease activity analysis. Replacement of NS2B-55 and NS2B-65 of GI to GIII significantly increased the enzymatic activity of GI NS2B(H)-NS3(pro) protease, whereas mutation of NS2B-55 and NS2B-65 of GIII to GI remarkably reduced the enzymatic activity of GIII NS2B(H)-NS3(pro) protease. Overall, these data demonstrated that NS2B-55 and NS2B-65 variations in hydrophilic domain of NS2B co-contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII. These observations gain an insight into the role of NS2B in regulation of NS3 protease activities, which is useful for understanding the replication of JEV GI and GIII viruses.
RESUMO
Japanese encephalitis virus (JEV) causes acute viral encephalitis in humans and reproductive disorders in pigs. JEV emerged during the 1870s in Japan, and since that time, JEV has been transmitted exclusively throughout Asia, according to known reporting and sequencing records. A recent JEV outbreak occurred in Australia, affecting commercial piggeries across different temperate southern Australian states, and causing confirmed infections in humans. A total of 47 human cases and 7 deaths were reported. The recent evolving situation of JEV needs to be reported due to its continuous circulation in endemic regions and spread to non-endemics areas. Here, we reconstructed the phylogeny and population dynamics of JEV using recent JEV isolates for the future perception of disease spread. Phylogenetic analysis shows the most recent common ancestor occurred about 2993 years ago (YA) (95% Highest posterior density (HPD), 2433 to 3569). Our results of the Bayesian skyline plot (BSP) demonstrates that JEV demography lacks fluctuations for the last two decades, but it shows that JEV genetic diversity has increased during the last ten years. This indicates the potential JEV replication in the reservoir host, which is helping it to maintain its genetic diversity and to continue its dispersal into non-endemic areas. The continuous spread in Asia and recent detection from Australia further support these findings. Therefore, an enhanced surveillance system is needed along with precautionary measures such as regular vaccination and mosquito control to avoid future JEV outbreaks.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Humanos , Animais , Suínos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Filogenia , Teorema de Bayes , Austrália/epidemiologia , GenótipoRESUMO
Nonstructural protein 2A (NS2A) of the Japanese encephalitis virus (JEV) contributes to viral replication and pathogenesis; however, a lack of NS2A-specific antibodies restricts studies on the underlying mechanisms. In this study, we constructed a recombinant JEV with a hemagglutinin (HA)-tagged NS2A (JEV-HA/NS2A/∆NS1') to overcome this challenge. An HA-tag was fused to the N-terminus of NS2A (HA-NS2A) at the intergenic junction between NS1 and NS2A. A peptide linker, "FNG", was added to the N-terminus of HA-tag to ensure correct cleavage between the C-terminus of NS1 and the N-terminus of HA-NS2A. To avoid the side effects of an unwanted NS1' tagged with HA (HA-NS1'), an alanine-to-proline (A30P) substitution was introduced at residue 30 of NS2A to abolish HA-NS1' production. The HA-tag insertion and A30P substitution were stably present in JEV-HA/NS2A/∆NS1' after six passages and did not exhibit any significant effects on viral replication and plaque morphology. Taking advantage of HA-NS2A, we examined the activities of NS2A during JEV infection in vitro using anti-HA antibodies. NS2A was observed to be localized to the endoplasmic reticulum and interact with viral NS2B and NS3 during virus infection. These data suggest that JEV-HA/NS2A/∆NS1' can serve as a model for the analysis of the biological characteristics and functions of NS2A in vitro during JEV infection.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Linhagem Celular , Hemaglutininas/metabolismo , Humanos , Proteínas não Estruturais Virais/químicaRESUMO
Flaviviruses are a group of enveloped viruses that enter the host cells through receptor-mediated endocytosis. The entry of flaviviruses into the cells is a multi-step process which involves several host factors that trigger the uptake of the virus. The initial step in the virus life cycle is the interactions between viral envelope proteins and the specific receptors on the surface of host cell. To date, several receptors have been identified such as glycosaminoglycans, tight junction proteins, laminin receptor and phosphatidylserine receptors. Moreover, the viruses may utilize integrins and C-type lectin receptors on the surface of host cells as the initial attachment factors. This mini-review will focus on recent progresses in the understanding of virus attachment, internalization, and membrane fusion with specific emphasis on the cellular receptors.
Assuntos
Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Suscetibilidade a Doenças , Endocitose , Humanos , Ligação Proteica , Multimerização Proteica , Receptores Virais/química , Relação Estrutura-Atividade , Ligação Viral , Replicação ViralRESUMO
Porcine Circovirus 2 (PCV2) is a crucial swine pathogen and considered a primary causative agent of porcine circovirus-associated diseases (PCVADs), posing a serious economic threat to the swine industry across globe. The world's biggest agricultural conglomerates have teamed up to create giant commercial pig farms across Shanghai due to the proximity of this region to more affluent lean-pork markets. Since its discovery, PCV2 has displayed extraordinary genetic diversity, and its genome is swiftly evolving through a series of mutations and recombinations. However, limited information on epidemiology, molecular characteristics, vaccine cross-protection, and the co-infection rate of PCV2 with other lethal swine diseases can adversely impact the pig production in the region. To investigate the molecular epidemic characteristics and genetic evolution of PCV2, pigs with doubtful symptoms of PCVADs were sampled from various commercial pig farms with a history of PWMS and/or PDNS across Shanghai from 2014 to 2018. Our results revealed the coexistence of multiple PCV2 genotypes (PCV2b, PCV2e, and PCV2d) among Shanghai pig herds and dominance of PCV2d among them. We also found critical amino acid substitutions in epitope regions of important capsid proteins in PCV2 isolates involved in viral replication and host immune escape. Spotted mutations may favor the prevalence and survival of various PCV2 genotypes despite availability of commercial vaccines. This study also provides insight into the co-infection status of PCV2 with major lethal swine viral diseases such as PPV and PPRSV. Collectively, these investigations will contribute to understanding the molecular epidemiology and evolution of PCV2 across the region.
Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Evolução Molecular , Doenças dos Suínos/epidemiologia , Animais , China/epidemiologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , DNA Viral/genética , Fazendas , Genótipo , Epidemiologia Molecular , Fases de Leitura Aberta/genética , Filogenia , Prevalência , Suínos , Doenças dos Suínos/virologiaRESUMO
Virus-like particles (VLPs) are non-replicative vectors for the delivery of heterologous epitopes and are considered one of the most potent inducers of cellular and humoral immune responses in mice and guinea pigs. In the present study, VLP-JEVe was constructed by the insertion of six Japanese encephalitis virus (JEV) envelope protein epitopes into different surface loop regions of PPV VP2 by the substitution of specific amino acid sequences without altering the assembly of the virus; subsequently, the protective efficacy of this VLP-JEVe was evaluated against JEV challenge in mice and guinea pigs. Mice immunized with the VLP-JEVe antigen developed high titers of neutralizing antibodies and 100% protection against lethal JEV challenge. The neutralizing and hemagglutination inhibition (HI) antibody responses were also induced in guinea pigs vaccinated with VLP-JEVe. In addition, immunization with VLP-JEVe in mice induced effective neutralizing antibodies and protective immunity against PPV (porcine parvovirus) challenge in guinea pigs. These studies suggest that VLP-JEVe produced as described here could be a potential candidate for vaccine development.
RESUMO
Japanese encephalitis (JE) is a vaccine-preventable disease caused by the Japanese encephalitis virus (JEV), which is primarily prevalent in Asia. JEV is a Flavivirus, classified into a single serotype with five genetically distinct genotypes (I, II, III, IV, and V). JEV genotype III (GIII) had been the most dominant strain and caused numerous outbreaks in the JEV endemic countries until 1990. However, recent data shows the emergence of JEV genotype I (GI) as a dominant genotype and it is gradually displacing GIII. The exact mechanism of this genotype displacement is still unclear. The virus can replicate in mosquito vectors and vertebrate hosts to maintain its zoonotic life cycle; pigs and aquatic wading birds act as an amplifying/reservoir hosts, and the humans and equines are dead-end hosts. The important role of pigs as an amplifying host for the JEV is well known. However, the influence of other domestic animals, especially birds, that live in high abundance and close proximity to the human is not well studied. Here, we strive to briefly highlight the role of birds in the JEV zoonotic transmission, discovery of birds as a natural reservoirs and amplifying host for JEV, species of birds susceptible to the JEV infection, and the proposed effect of JEV on the poultry industry in the future, a perspective that has been neglected for a long time. We also discuss the recent in vitro and in vivo studies that show that the newly emerged GI viruses replicated more efficiently in bird-derived cells and ducklings/chicks than GIII, and an important role of birds in the JEV genotype shift from GIII to GI.
Assuntos
Aves/virologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Mosquitos Vetores/virologia , Animais , Genótipo , HumanosRESUMO
Japanese encephalitis virus (JEV) is a viral zoonosis that can cause viral encephalitis, death and disability whose primary vector is the Culex mosquito. Viral infection induces a series of antimicrobial peptide responses in mosquitoes, and the effector defensin enhances JEV replication in mosquitoes. However, the underlying mechanisms by which defensin enhances JEV are not fully understood. Here, we found that mosquito defensin could downregulate the antiviral protein HSC70B and enhance virus infection in mosquitoes. The cell-surface protein HSC70B was significantly downregulated by JEV infection and defensin treatment. Low levels of HSC70B were beneficial to JEV infection in mosquitoes. Taken together, these findings show that defensin and HSC70B axis facilitates JEV infection in the mosquito.
Assuntos
Culex/virologia , Defensinas/genética , Regulação para Baixo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/metabolismo , Animais , Antivirais/metabolismo , Células Cultivadas , Feminino , Mosquitos Vetores/virologia , Internalização do VírusRESUMO
Understanding the proteolytic processing of polyprotein mediated by NS2B-NS3 protease contributes to the exploration of the mechanisms underlying infection of Japanese encephalitis virus (JEV), a zoonotic flavivirus. In this study, eukaryotic and prokaryotic cell models were employed to identify the cleavage sites mediated by viral NS2B-NS3 protease in JEV polyprotein. Artificial green fluorescent protein (GFP) substrates that contained the predicted cleavage site sequences of JEV polyprotein were expressed in swine testicle (ST) cells in the presence and absence of JEV infection, or co-expressed in E. coli with the recombinant NS2B-NS3 protease that was generated by fusing the N-terminal protease domain of NS3 to the central hydrophilic domain of NS2B. The cleavage of GFP substrates was examined by western blot. Among twelve artificial GFP substrates containing the cleavage site sequences predictively processed by host cell and/or NS2B-NS3 proteases, all sites were found to be cleaved by host cell proteases with different efficiencies. The sites at internal C, NS2A/NS2B, NS2B/NS3 and NS3/NS4A junctions, but not the sites at internal NS3, internal NS4A and NS4B/NS5 junctions were identified to be cleaved by JEV NS2B-NS3 protease. These data provide insight into the proteolytic processing of polyprotein, which is useful for understanding JEV replication and pathogenesis.
RESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV, species Betaarterivirus suid 1 or 2) is a major pathogen affecting pigs on farms throughout the world. miR-296-3p is a multifunctional microRNA involved in the regulation of the inflammatory response in mice and humans. However, little is known about the biological functions of miR-296-3p in pigs. In this study, we used a highly pathogenic PRRSV-2 (species Betaarterivirus suid 2) strain to show that PRRSV infection robustly downregulates the expression of miR-296-3p in porcine alveolar macrophages (PAMs). Furthermore, we demonstrated that overexpression of miR-296-3p increases the replication of highly pathogenic (HP)-PRRSV in PAMs. Notably, the overexpression of miR-296-3p inhibited the induction of TNF-α, even with increased viral replication, compared with that in the HP-PRRSV-infected control group. We also demonstrated that miR-296-3p targets IRF1-facilitated viral infection and modulates the expression of TNF-α in PAMs during HP-PRRSV infection and that IRF1 regulates the expression of TNF-α by activating the TNF promoter via IRF1 response elements. In summary, these findings show that HP-PRRSV infection activates the IRF1/TNF-α signaling axis in PAMs by downregulating host miR-296-3p. This extends our understanding of the inflammatory response induced by HP-PRRSV infection.
Assuntos
Regulação para Baixo/genética , Fator Regulador 1 de Interferon/genética , Macrófagos Alveolares/virologia , MicroRNAs/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos/virologia , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Perfilação da Expressão Gênica/métodos , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Síndrome Respiratória e Reprodutiva Suína/virologia , Transdução de Sinais/genética , Suínos/genética , Transcriptoma/genética , Replicação Viral/genéticaRESUMO
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Infecções por Flavivirus/virologia , Flavivirus/enzimologia , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Vírus da Dengue , Redução da Medicação , Vírus da Encefalite Japonesa (Espécie) , Flavivirus/genética , Humanos , Peptídeo Hidrolases/genética , Poliproteínas , RNA Helicases/genética , Serina Endopeptidases/genética , Proteínas não Estruturais Virais/genética , Proteínas do Complexo da Replicase Viral , Vírus do Nilo Ocidental , Vírus da Febre Amarela , Zika virusRESUMO
A total of 548 mosquitoes were collected from different animal farms located near to highly populated cities in Xinjiang and were subjected to metagenomic next-generation sequencing (mNGS). The mNGS data demonstrated that 18,842 (XJ1 strain) and 1,077 (XJ2 strain) of Japanese encephalitis virus (JEV)-related reads were detected in XJ1 and XJ2 mosquito samples collected from Wushi and Wensu counties of Aksu area, which accounted for 0.032% and 0.006% of the total clean reads generated from XJ1 and XJ2 samples, respectively. The Bayesian molecular phylogenetic analysis suggested that XJ1 and XJ2 strains belonged to JEV genotype III and were clustered with JEV strains isolated in China. Notably, Bayesian molecular time line phylogeny revealed that XJ1 strain shared its MRCA with JEV GSS strain about 67 YA, suggesting that XJ1 strain likely originated from linages closely related to GSS strain and spread to Xinjiang later. Overall, these findings suggest that Xinjiang was probably not free from JEV, and thus, a further surveillance of JEV is required in Xinjiang.
Assuntos
Culicidae/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Animais , Teorema de Bayes , China/epidemiologia , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The SD12-F120 is a live-attenuated genotype I strain of Japanese encephalitis virus (JEV) and was obtained by serial passage of wild-type strain SD12 on BHK-21 cells combined with multiple plaque purification and virulence selection in mice. The large scale production and vast clinical trials always demand ideal safety and efficacy profile of live-attenuated vaccines. In the present study, SD12-F120VC has undergone serial passaging of P1-P30 in WHO qualified Vero cells to assess the potential effect of adaptation to growth on Vero cells. The series of experiments showed that vaccine SD12-F120VC (Vero cell adapted) variants have consistently increased in peak virus titer compared to early passages and have good adaptation to growth in Vero cells. The animal experiments showed that Vero cell adapted SD12-F120VC variants have attenuation phenotype in suckling mice and the plaque morphology for all SD12-F120VC variants was small. Vaccination of mice with SD12-F120VC vaccine produced complete protection for homologous SD12 genotype I strain, but failed to give the complete protection of vaccinated mice against the challenge of heterologous N28 genotype III strain. In response to immunization of SD12-F120VC in mice, the neutralizing antibodies titer against homologous SD12-F120VC and SD12 (GI) was higher than heterologous N28 (GIII) strain. The prM protein has 6 amino acid substitutions, of which 5 amino acid changes were confined at the start of the pr domain in the â¼40 amino acids, and some mutations in the pr domain of prM might contribute to Vero cell adaptation. Our findings in this study are important for validation, evaluation and quality control study of live attenuated flaviviruses vaccines and show that Vero cells are a suitable substrate for the production of a safe and stable live-attenuated JEV vaccine.
Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Vacinas Atenuadas/genética , Proteínas Estruturais Virais/genética , Vacinas Virais/genética , Adaptação Biológica , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/prevenção & controle , Feminino , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Inoculações Seriadas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Células Vero , Proteínas Estruturais Virais/administração & dosagem , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologiaRESUMO
Japanese encephalitis virus (JEV) is a viral zoonosis that can cause viral encephalitis, death, and disability. Although the Culex mosquito is the primary vector of JEV, little is known about JEV transmission by this kind of mosquito. Here, we found that mosquito defensin facilitated the adsorption of JEV on target cells via the defensin/lipoprotein receptor-related protein 2 (LRP2) axis. Mosquito defensin bound the ED III domain of the viral envelope (E) protein and directly mediated efficient virus adsorption on the target cell surface; the receptor LRP2, which is expressed on the cell surface, affected defensin-dependent adsorption. As a result, mosquito defensin enhanced JEV infection in the salivary gland, increasing the possibility of viral transmission by mosquitoes. These findings demonstrate the novel role of mosquito defensin in JEV infection and the mechanisms through which the virus exploits mosquito defensin for infection and transmission.IMPORTANCE In this study, we observed the complex roles of mosquito defensin in JEV infection; mosquito defensin exhibited a weak antiviral effect but strongly enhanced binding. In the latter, defensin directly binds the ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry. Together, our results indicate that mosquito defensin plays an important role in facilitating JEV infection and potential transmission.
Assuntos
Culex/genética , Defensinas/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Proteínas de Insetos/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mosquitos Vetores/genética , Proteínas do Envelope Viral/genética , Adsorção , Animais , Culex/virologia , Defensinas/metabolismo , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Insetos/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mosquitos Vetores/virologia , Ligação Proteica , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Proteínas do Envelope Viral/metabolismo , Internalização do VírusRESUMO
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque on BHK-21 cells and showed reduced replication in mouse brains compared with SD12. Mice inoculated with SD12-F120 via either intraperitoneal or intracerebral route showed no clinical symptoms, indicating a highly attenuated phenotype in terms of both neuroinvasiveness and neurovirulence. SD12-F120 harbored 29 nucleotide variations compared with SD12, of which 20 were considered silent nucleotide mutations, while nine resulted in eight amino acid substitutions. Comparison of the amino acid variations of SD12-F120 vs SD12 pair with those from other four isogenic pairs of the attenuated and their virulent parental strains revealed that the variations at E138 and E176 positions of E protein were identified in four and three pairs, respectively, while the remaining amino acid variations were almost unique to their respective strain pairs. These observations suggest that the genetic changes acquired during the attenuation process were likely to be strain-specific and that the mechanisms associated with JEV attenuation/virulence are complicated.
Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Animais , Encéfalo/virologia , Linhagem Celular , Cricetinae , Vírus da Encefalite Japonesa (Espécie)/classificação , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Feminino , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Filogenia , Especificidade da Espécie , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Virulência/genética , Replicação Viral/genéticaRESUMO
Mosquitoes harbour a diversity of viruses and are responsible for several mosquito-borne viral diseases of humans and animals, thereby leading to major public health concerns, and significant economic losses across the globe. Viral metagenomics offers a great opportunity for bulk analysis of viral genomes retrieved directly from environmental samples. In this study, we performed a viral metagenomic analysis of five pools of mosquitoes belonging to Aedes, Anopheles and Culex species, collected from different pig farms in the vicinity of Shanghai, China, to explore the viral community carried by mosquitoes. The resulting metagenomic data revealed that viral community in the mosquitoes was highly diverse and varied in abundance among pig farms, which comprised of more than 48 viral taxonomic families, specific to vertebrates, invertebrates, plants, fungi, bacteria and protozoa. In addition, a considerable number of viral reads were related to viruses that are not classified by host. The read sequences related to animal viruses included parvoviruses, anelloviruses, circoviruses, flavivirus, rhabdovirus and seadornaviruses, which might be taken up by mosquitoes from viremic animal hosts during blood feeding. Notably, sample G1 contained the most abundant sequence related to Banna virus, which is of public health interest because it causes encephalitis in humans. Furthermore, non-classified viruses also shared considerable virus sequences in all the samples, presumably belonging to unexplored virus category. Overall, the present study provides a comprehensive knowledge of diverse viral populations carried by mosquitoes at pig farms, which is a potential source of diseases for mammals including humans and animals. These viral metagenomic data are valuable for assessment of emerging and re-emerging viral epidemics.
Assuntos
Culicidae/virologia , Genoma Viral/genética , Metagenoma/genética , Doenças dos Suínos/virologia , Vírus/genética , Aedes/virologia , Animais , Anopheles/virologia , China/epidemiologia , Culex/virologia , Fazendas , Feminino , Metagenômica , Filogenia , Suínos , Vírus/isolamento & purificaçãoRESUMO
Karyopherin α4 (KPNA4) is an adaptor molecule that mediates type I interferon (IFN) production by facilitating the nuclear translocation of IFN transcription factors. Here, we cloned the duck KPNA4 (duKPNA4) gene and analyzed its involvement in type I IFN expression as well as antiviral response against Japanese encephalitis virus (JEV). The full-length duKPNA4 gene encoded a 520-amino acid protein that shared 97.3-98.7% sequence similarity with its orthologues in chickens, humans and mice. The duKPNA4 was extensively expressed in various duck tissues at the mRNA level. Analysis of the subcellular localization of duKPNA4 by immunofluorescence assays indicated that the duKPNA4 was primarily distributed in both the cytoplasm and nucleus in primary duck embryonic fibroblasts (DEFs). However, it translocated from the cytoplasm to the nucleus in response to poly(I:C) stimulation or JEV infection. The duKPNA4 interacted with duck IFN regulatory factor 7 and facilitated its nuclear translocation, thereby up-regulating the expression of IFN-α and IFN-ß in DEFs in the presence of poly(I:C) stimulation. Exogenous expression of duKPNA4 significantly elevated the expression of IFN-α and IFN-ß induced by JEV infection and inhibited JEV replication in DEFs. These data demonstrate the importance of duKPNA4 in type I IFN signaling as well as the antiviral response against JEV replication.