RESUMO
3D bioprinting has become a leading contender among additive manufacturing techniques in biomedicine, offering the potential to create functional tissues and organs that could eliminate the need for transplants. However, for complex tissues like muscle, neural, bone, and heart, bioinks need significant improvements in properties like printability, mechanical strength, and functionalities crucial for mimicking natural tissues. Nanomaterial-based bioinks offer exciting possibilities. Among these, MXenes stand out due to their excellent biocompatibility, abundant surface groups for cell interaction, conductivity for electrical stimulation, and photothermal properties. This review delves into the potential of MXenes in 3D bioprinting. We explore the advantages of 3D printing for MXene-based biofabrication, followed by a deep dive into MXenes' properties that make them ideal for tissue engineering and regeneratice medicine. We also provide a concise overview of various 3D bioprinting techniques and the essential criteria for bioinks employed in this process. We then discuss the diverse applications of these MXene-incorporated bioprinted constructs. Finally, we address the current challenges and future directions in this promising field. This comprehensive analysis will provide valuable insights for researchers exploring the exciting potential of nanomaterials beyond MXenes in 3D bioprinting for biomedicine advancements.
RESUMO
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Assuntos
Regeneração Óssea , Imunomodulação , Impressão Tridimensional , Seda , Engenharia Tecidual , Alicerces Teciduais , Regeneração Óssea/efeitos dos fármacos , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Seda/química , Animais , Imunomodulação/efeitos dos fármacos , Materiais Biocompatíveis/química , Osso e Ossos/metabolismoRESUMO
Bio-printed hydrogels have evolved as one of the best regenerative medicine and tissue engineering platforms due to their outstanding cell-friendly microenvironment. A correct hydrogel ink formulation is critical for creating desired scaffolds that have better fidelity after printing. Gelatin and its derivatives have sparked intense interest in various biomedical sectors because of their biocompatibility, biodegradability, ease of functionalization, and rapid gelling tendency. As a result, this report emphasizes the relevance of gelatin-based hydrogel in fabricating bio-printed scaffolds for orthopedic applications. Starting with what hydrogels and bio-printing are all about. We further summarized the different gelatin-based bio-printing techniques explored for orthopedic applications, including a few recent studies. We also discussed the suitability of gelatin as a biopolymer for both 3D and 4D printing materials. As extrusion is one of the most widely used techniques for bio-printing gelatin-based, we summarize the rheological features of gelatin-based bio-ink. Lastly, we also elaborate on the recent bio-printed gelatin-based studies for orthopedics applications, the potential clinical translation issues, and research possibilities.