Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233837

RESUMO

BACKGROUND: Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades LAZY, DEEPER ROOTING (DRO), and TILLER ANGLE CONTROL (TAC). RESULTS: Here, we investigated the influence of light on different aspects of GSA phenotypes in LAZY and DRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed that LAZY and DRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Single lazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling. CONCLUSIONS: Collectively, the data show that differential expression of LAZY and DRO genes are required to enable plants to alter organ angles in response to light-mediated signals.


Assuntos
Gravitação , Plantas
2.
Curr Opin Plant Biol ; 59: 101983, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422965

RESUMO

Genetic improvement of architectural traits offers tremendous opportunities to dramatically improve crop densities, productivity, and ultimately sustainability. Among these, the orientation, or gravitropic set point angle (GSA), of plant organs is critical to optimize crop profiles, light capture, and nutrient acquisition. Mutant GSA phenotypes have been studied in plants since the 1930's but only recently have the underlying genes been identified. Many of these genes have turned out to fall within the IGT (LAZY1/DRO1/TAC1) family, which initially was not previously recognized due to the lack of sequence conservation of homologous genes across species. Here we discuss recent progress on IGT family genes in various plant species over the past century, review possible functional mechanisms, and provide further analysis of their evolution in land plants and their past and future roles in crop domestication.


Assuntos
Domesticação , Plantas , Fenótipo , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...