Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 13(8): 707, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970851

RESUMO

RIG-I-like receptors (RLRs), protein kinase R (PKR), and endosomal Toll-like receptor 3 (TLR3) sense viral non-self RNA and are involved in cell fate determination. However, the mechanisms by which intracellular RNA induces apoptosis, particularly the role of each RNA sensor, remain unclear. We performed cytoplasmic injections of different types of RNA and elucidated the molecular mechanisms underlying viral dsRNA-induced apoptosis. The results obtained revealed that short 5'-triphosphate dsRNA, the sole ligand of RIG-I, induced slow apoptosis in a fraction of cells depending on IRF-3 transcriptional activity and IFN-I production. However, intracellular long dsRNA was sensed by PKR and TLR3, which activate distinct signals, and synergistically induced rapid apoptosis. PKR essentially induced translational arrest, resulting in reduced levels of cellular FLICE-like inhibitory protein and functioned in the TLR3/TRIF-dependent activation of caspase 8. The present results demonstrated that PKR and TLR3 were both essential for inducing the viral RNA-mediated apoptosis of infected cells and the arrest of viral production.


Assuntos
Antivirais , Receptor 3 Toll-Like , Antivirais/farmacologia , Apoptose , Interferon beta/genética , RNA de Cadeia Dupla/genética , RNA Viral/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
4.
PLoS Pathog ; 12(2): e1005444, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862753

RESUMO

RIG-I triggers antiviral responses by recognizing viral RNA (vRNA) in the cytoplasm. However, the spatio-temporal dynamics of vRNA sensing and signal transduction remain elusive. We investigated the time course of events in cells infected with Newcastle disease virus (NDV), a non-segmented negative-strand RNA virus. RIG-I was recruited to viral replication complexes (vRC) and triggered minimal primary type I interferon (IFN) production. RIG-I subsequently localized to antiviral stress granules (avSG) induced after vRC formation. The inhibition of avSG attenuated secondary IFN production, suggesting avSG as a platform for efficient vRNA detection. avSG selectively captured positive-strand vRNA, and poly(A)+ RNA induced IFN production. Further investigations suggested that uncapped vRNA derived from read-through transcription was sensed by RIG-I in avSG. These results highlight how viral infections stimulate host stress responses, thereby selectively recruiting uncapped vRNA to avSG, in which RIG-I and other components cooperate in an efficient antiviral program.


Assuntos
RNA Helicases DEAD-box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteína DEAD-box 58 , Humanos , Vírus da Influenza A/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon beta/efeitos dos fármacos , Interferon beta/genética , Camundongos , Vírus da Doença de Newcastle/genética , RNA Viral/efeitos dos fármacos , Receptores Imunológicos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...