Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816673

RESUMO

The root-associated soil microbiome contributes immensely to support plant health and performance against abiotic and biotic stressors. Understanding the processes that shape microbial assembly in root-associated soils is of interest in microbial ecology and plant health research. In this study, 37 plant species were grown in the same soil mixture for 10 months, whereupon the root-associated soil microbiome was assessed using amplicon sequencing. From this, the contribution of direct and indirect plant effects on microbial assembly was assessed. Plant species and plant-induced changes in soil physicochemistry were the most significant factors that accounted for bacterial and fungal community variation. Considering that all plants were grown in the same starting soil mixture, our results suggest that plants, in part, shape the assembly of their root-associated soil microbiome via their effects on soil physicochemistry. With the increase in phylogenetic ranking from plant species to class, we observed declines in the degree of community variation attributed to phylogenetic origin. That is, plant-microbe associations were unique to each plant species, but the phylogenetic associations between plant species were not important. We observed a large degree of residual variation (> 65%) not accounted for by any plant-related factors, which may be attributed to random community assembly.


Assuntos
Microbiota , Microbiologia do Solo , Filogenia , Solo , Bactérias/genética , Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera
2.
Ecol Evol ; 13(8): e10444, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37649704

RESUMO

Characterising plant-herbivore interactions is important to understanding the processes that influence community structure and ecosystem functioning. Traditional methods used to identify plant-herbivore interactions are being superseded by non-destructive molecular approaches that can infer interactions with greater resolution and accuracy from environmental DNA (e.g. faeces and regurgitate). However, few studies have compared the success of using different sample types and whether they provide similar or contrasting information about species' diet. Here we compared the success of DNA amplification and host plant species identification using restriction fragment length polymorphism (RFLP) applied to faecal and regurgitate samples collected from alpine grasshoppers Paprides nitidus Hutton during a grassland community mesocosm experiment. We found that DNA amplification success was 23% and 86% higher for faecal than regurgitate samples from female and male grasshoppers, respectively. In contrast, successful host plant identification using RFLP was 9% higher for regurgitate than faecal samples. The mean number of host plant species identified per sample (1.40) did not differ between sample types or grasshopper sexes. Of the 136 paired faecal-regurgitate samples, just 41% and 74% produced exactly or partially matching host plant identifications, respectively, indicating that different sample types provided complementary information about herbivore diet. Some plant species were more likely to be identified from faecal samples than expected by chance, and we found that this identification bias skewed towards plant species with higher investment in leaf tissue. We conclude that multiple sample types may be required to fully characterise an invertebrate herbivore species' diet.

3.
Mar Pollut Bull ; 188: 114708, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773585

RESUMO

The coastal waters of Namibia and South Africa have an extensive history of oil spills, with 71 recorded up to 2021. Thirty-nine spills reportedly affected 83,224 seabirds, with African penguins (Spheniscus demersus; 91.0 %) and Cape gannets (Morus capensis; 8.5 %) most affected. Spills affecting seabirds were caused by unknown sources (46 %), bulk/cargo carriers (43 %), tankers (38 %) and ship-to-ship transfers (14 %). The number of penguins oiled was predicted by the breeding population size within 25 to 75 km, but not the volume of oiled spilled, the month or the year. Rehabilitation records from penguins oiled in spills since 2001 reveal that the day of admission (relative to the start of the spill) was predictive of packed cell volume, body mass, and plasma total solids, with the latter two being predictive of rehabilitation success. Our results highlight the importance of rapid monitoring at colonies to locate oiled birds in the event of spills.


Assuntos
Aizoaceae , Poluição por Petróleo , Spheniscidae , Animais , África do Sul , Namíbia , Melhoramento Vegetal
4.
Microb Ecol ; 86(2): 1035-1049, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36538089

RESUMO

Arbuscular mycorrhizal fungi (AMF) deliver potentially significant services in sustainable agricultural ecosystems, yet we still lack evidence showing how AMF abundance and/or community composition can benefit crops. In this study, we manipulated AMF communities in grapevine rootstock and measured plant growth and physiological responses. Glasshouse experiments were set up to determine the interaction between rootstock variety and different AMF communities, using AMF communities originating under their own (i.e., "home") soil and other rootstocks' (i.e., "away") soil. The results revealed that specific AMF communities had differential effects on grapevine rootstock growth and nutrient uptake. It was demonstrated that a rootstock generally performed better in the presence of its own AMF community. This study also showed that AMF spore diversity and the relative abundance of certain species is an important factor as, when present in equal abundance, competition between species was indicated to occur, resulting in a reduction in the positive growth outcomes. Moreover, there was a significant difference between the communities with some AMF communities increasing plant growth and nutrient uptake compared with others. The outcomes also demonstrated that some AMF communities indirectly influenced the chlorophyll content in grapevine leaves through the increase of specific nutrients such as K, Mn, and Zn. The findings also indicated that some AMF species may deliver particular benefits to grapevine plants. This work has provided an improved understanding of community level AMF-grapevine interaction and delivered an increased knowledge of the ecosystem services they provide which will benefit the wine growers and the viticulture industry.


Assuntos
Micobioma , Micorrizas , Ecossistema , Solo , Produtos Agrícolas , Nutrientes , Microbiologia do Solo , Raízes de Plantas/microbiologia
5.
Biosens Bioelectron ; 220: 114865, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368140

RESUMO

Classification and sorting of cells using image-activated cell sorting (IACS) systems can bring significant insight to biomedical sciences. Incorporating deep learning algorithms into IACS enables cell classification and isolation based on complex and human-vision uninterpretable morphological features within a heterogeneous cell population. However, the limited capabilities and complicated implementation of deep learning-assisted IACS systems reported to date hinder the adoption of the systems for a wide range of biomedical research. Here, we present image-activated cell sorting by applying fast deep learning algorithms to conduct cell sorting without labeling. The overall sorting latency, including signal processing and AI inferencing, is less than 3 ms, and the training time for the deep learning model is less than 30 min with a training dataset of 20,000 images. Both values set the record for IACS with sorting by AI inference. . We demonstrated our system performance through a 2-part polystyrene beads sorting experiment with 96.6% sorting purity, and a 3-part human leukocytes sorting experiment with 89.05% sorting purity for monocytes, 92.00% sorting purity for lymphocytes, and 98.24% sorting purity for granulocytes. The above performance was achieved with simple hardware containing only 1 FPGA, 1 PC and GPU, as a result of an optimized custom CNN UNet and efficient use of computing power. The system provides a compact, sterile, low-cost, label-free, and low-latency cell sorting solution based on real-time AI inferencing and fast training of the deep learning model.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Processamento de Sinais Assistido por Computador
6.
Ecol Evol ; 12(9): e9255, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091339

RESUMO

In long-lived species, reproductive skipping is a common strategy whereby sexually mature animals skip a breeding season, potentially reducing population growth. This may be an adaptive decision to protect survival, or a non-adaptive decision driven by individual-specific constraints. Understanding the presence and drivers of reproductive skipping behavior can be important for effective population management, yet in many species such as the endangered African penguin (Spheniscus demersus), these factors remain unknown. This study uses multistate mark-recapture methods to estimate African penguin survival and breeding probabilities at two colonies between 2013 and 2020. Overall, survival (mean ± SE) was higher at Stony Point (0.82 ± 0.01) than at Robben Island (0.77 ± 0.02). Inter-colony differences were linked to food availability; under decreasing sardine (Sardinops sagax) abundance, survival decreased at Robben Island and increased at Stony Point. Additionally, reproductive skipping was evident across both colonies; at Robben Island the probability of a breeder becoming a nonbreeder was ~0.22, versus ~0.1 at Stony Point. Penguins skipping reproduction had a lower probability of future breeding than breeding individuals; this lack of adaptive benefit suggests reproductive skipping is driven by individual-specific constraints. Lower survival and breeding propensity at Robben Island places this colony in greater need of conservation action. However, further research on the drivers of inter-colony differences is needed.

7.
PeerJ ; 10: e13416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722261

RESUMO

Seabird populations experience predation that can impact their breeding density and breeding success. The Cape gannet Morus capensis is endemic to the Benguela upwelling ecosystem and is classified as Endangered by the IUCN. They are affected by several threats, including predation by the Cape fur seal Arctocephalus pusillus pusillus. Many fledglings succumb to predation during their maiden flight across waters around the island. To curb predation, the selective culling of individual predatory seals was implemented in 2014, 2015, and 2018. Our first study objective was to determine if selective culling of Cape fur seals significantly reduced predation probability on Cape gannets. We tested whether predation probability in 2014, 2015, and 2018 was affected by fish biomass, gannet fledgling numbers, and/or the presence/absence of selective culling. Our second objective was to determine what led to fluctuations in Cape fur seal predation on Cape gannet fledglings between 2007 and 2018. We tested whether fish biomass and the amount of Cape gannet fledglings in the water affected predation probability on the fledglings. Results indicated that selective culling reduced predation within years. We found that with both increased fledgling numbers and increased fish biomass, seal predation probability was reduced. This suggests that a sustainable way to promote the conservation of Cape gannets would be to increase food availability for both the Cape fur seals and Cape gannets. Our findings, collectively with the global trend of the declining Cape gannet population and their endemism, provide reasons advocating for the conservation of the food resources of both the Cape fur seal and the Cape gannet in the Benguela system.


Assuntos
Caniformia , Otárias , Focas Verdadeiras , Animais , Ecossistema , Comportamento Predatório , África do Sul , Baías , Aves , Peixes
8.
Trends Plant Sci ; 27(8): 769-780, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35501260

RESUMO

Nature-based management aims to improve sustainable agroecosystem production, but its efficacy has been variable. We argue that nature-based agroecosystem management could be significantly improved by explicitly considering and manipulating the underlying networks of species interactions. A network perspective can link species interactions to ecosystem functioning and stability, identify influential species and interactions, and suggest optimal management approaches. Recent advances in predicting the network roles of species from their functional traits could allow direct manipulation of network architecture through additions or removals of species with targeted traits. Combined with improved understanding of the structure and dynamics of networks across spatial and temporal scales and interaction types, including social-ecological, applying these tools to nature-based management can contribute to sustainable agroecosystems.


Assuntos
Ecossistema
9.
Front Bioeng Biotechnol ; 10: 877603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402391

RESUMO

The global pandemic caused by the SARS-CoV-2 virus has underscored the need for rapid, simple, scalable, and high-throughput multiplex diagnostics in non-laboratory settings. Here we demonstrate a multiplex reverse-transcription loop-mediated isothermal amplification (RT-LAMP) coupled with a gold nanoparticle-based lateral flow immunoassay (LFIA) capable of detecting up to three unique viral gene targets in 15 min. RT-LAMP primers associated with three separate gene targets from the SARS-CoV-2 virus (Orf1ab, Envelope, and Nucleocapsid) were added to a one-pot mix. A colorimetric change from red to yellow occurs in the presence of a positive sample. Positive samples are run through a LFIA to achieve specificity on a multiplex three-test line paper assay. Positive results are indicated by a characteristic crimson line. The device is almost fully automated and is deployable in any community setting with a power source.

10.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173045

RESUMO

We develop a high-throughput technique to relate positions of individual cells to their three-dimensional (3D) imaging features with single-cell resolution. The technique is particularly suitable for nonadherent cells where existing spatial biology methodologies relating cell properties to their positions in a solid tissue do not apply. Our design consists of two parts, as follows: recording 3D cell images at high throughput (500 to 1,000 cells/s) using a custom 3D imaging flow cytometer (3D-IFC) and dispensing cells in a first-in-first-out (FIFO) manner using a robotic cell placement platform (CPP). To prevent errors due to violations of the FIFO principle, we invented a method that uses marker beads and DNA sequencing software to detect errors. Experiments with human cancer cell lines demonstrate the feasibility of mapping 3D side scattering and fluorescent images, as well as two-dimensional (2D) transmission images of cells to their locations on the membrane filter for around 100,000 cells in less than 10 min. While the current work uses our specially designed 3D imaging flow cytometer to produce 3D cell images, our methodology can support other imaging modalities. The technology and method form a bridge between single-cell image analysis and single-cell molecular analysis.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Citometria de Fluxo/instrumentação , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Software
11.
Conserv Physiol ; 9(1): coab078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532057

RESUMO

Despite the importance of ecotourism in species conservation, little is known about the industry's effects on wildlife. In South Africa, some African penguin (Spheniscus demersus) colonies have become tourist attractions. The species is globally endangered, with population sizes decreasing over the past 40 years. As African penguin chicks are altricial and unable to move away from anthropogenic stressors, it is important to evaluate the effect of tourist activities on baseline glucocorticoid levels as a measure of potential disturbance. Chicks at three study sites within two breeding colonies (Robben Island, Stony Point), with varying levels of exposure to tourism (low/moderate/high) were monitored. Urofaecal samples were collected to determine urofaecal glucocorticoid metabolite (ufGCM) concentrations as an indication of baseline stress physiology. Morphometric measurements were taken to compare body condition between sites. Penguin chicks experiencing low, infrequent human presence had significantly higher mean (± standard deviation) ufGCM levels [1.34 ± 1.70 µg/g dry weight (DW)] compared to chicks experiencing both medium (0.50 ± 0.40 µg/g DW, P = 0.001) and high levels of human presence (0.57 ± 0.47 µg/g DW, P = 0.003). There was no difference in chick body condition across sites. These results suggest that exposure to frequent human activity may induce habituation/desensitization in African penguin chicks. Acute, infrequent human presence was likely an important driver for comparatively higher ufGCM levels in chicks, though several other environmental stressors may also play an important role in driving adrenocortical activity. Nevertheless, as unhabituated chicks experiencing infrequent anthropogenic presence showed significantly higher ufGCM levels, managers and legislation should attempt to minimize all forms of activity around important breeding colonies that are not already exposed to regular tourism. Although the results of this study are crucial for developing enhanced conservation and management protocols, additional research on the long-term effect of anthropogenic activities on African penguin physiology is required.

12.
APL Photonics ; 6(7): 076101, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263031

RESUMO

The microfluidic-based, label-free image-guided cell sorter offers a low-cost, high information content, and disposable solution that overcomes many limitations in conventional cell sorters. However, flow confinement for most microfluidic devices is generally only one-dimensional using sheath flow. As a result, the equilibrium distribution of cells spreads beyond the focal plane of commonly used Gaussian laser excitation beams, resulting in a large number of blurred images that hinder subsequent cell sorting based on cell image features. To address this issue, we present a Bessel-Gaussian beam image-guided cell sorter with an ultra-long depth of focus, enabling focused images of >85% of passing cells. This system features label-free sorting capabilities based on features extracted from the output temporal waveform of a photomultiplier tube (PMT) detector. For the sorting of polystyrene beads, SKNO1 leukemia cells, and Scenedesmus green algae, our results indicate a sorting purity of 97%, 97%, and 98%, respectively, showing that the temporal waveforms from the PMT outputs have strong correlations with cell image features. These correlations are also confirmed by off-line reconstructed cell images from a temporal-spatial transformation algorithm tailored to the scanning Bessel-Gaussian beam.

13.
Nat Commun ; 12(1): 2696, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976206

RESUMO

Herbivores may facilitate or impede exotic plant invasion, depending on their direct and indirect interactions with exotic plants relative to co-occurring natives. However, previous studies investigating direct effects have mostly used pairwise native-exotic comparisons with few enemies, reached conflicting conclusions, and largely overlooked indirect interactions such as apparent competition. Here, we ask whether native and exotic plants differ in their interactions with invertebrate herbivores. We manipulate and measure plant-herbivore and plant-soil biota interactions in 160 experimental mesocosm communities to test several invasion hypotheses. We find that compared with natives, exotic plants support higher herbivore diversity and biomass, and experience larger proportional biomass reductions from herbivory, regardless of whether specialist soil biota are present. Yet, exotics consistently dominate community biomass, likely due to their fast growth rates rather than strong potential to exert apparent competition on neighbors. We conclude that polyphagous invertebrate herbivores are unlikely to play significant direct or indirect roles in mediating plant invasions, especially for fast-growing exotic plants.


Assuntos
Herbivoria/fisiologia , Espécies Introduzidas , Invertebrados/fisiologia , Plantas/metabolismo , Algoritmos , Animais , Biomassa , Biota , Ecossistema , Interações Hospedeiro-Parasita , Nova Zelândia , Plantas/classificação , Plantas/parasitologia , Solo/parasitologia
14.
Parasitol Res ; 119(11): 3603-3616, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32996052

RESUMO

Nest design and characteristics can influence the microclimatic conditions in the nest. Nest-dwelling ectoparasites are sensitive to temperature and moisture and as such the conditions in the nest can influence parasite infestations. The endangered African penguin (Spheniscus demersus) breeds in different nest types and as yet little is known with regard to the microclimate and parasite infestation within these nests. This study characterized the microclimatic conditions in natural open, natural covered (with vegetation) and artificial nests, and assessed the relationship between nest characteristics (type, age, distance from the coast, orientation and entrance opening) and in-nest ectoparasite infestations and the health of African penguins in Stony Point, South Africa. Penguins (50 adults and 192 chicks) and their nests (n = 308) were sampled in 2016 and 2017. Soil temperature was higher in artificial than in natural nests, and soil and nest material moisture was lower in artificial and natural covered nests than natural open. Ectoparasite infestations were higher under warmer and drier conditions, in artificial nests and nests near the coastline. Penguin (adult and chick) body mass and chick body condition were lower in warmer nests and total plasma protein (in adults and checks) was lower in drier nests. Given the potential adverse effects of ectoparasites on host species, it is recommended that conservation agencies implement a monitoring programme to assess the ectoparasite infestation in artificial nests across multiple colonies. This information will facilitate a more holistic penguin conservation management plan that may prevent further detrimental effects on this endangered penguin species.


Assuntos
Ectoparasitoses/veterinária , Microclima , Spheniscidae/parasitologia , Animais , Ectoparasitoses/etiologia , Ectoparasitoses/parasitologia , Espécies em Perigo de Extinção , Comportamento de Nidação , África do Sul , Temperatura
15.
Ecol Evol ; 10(15): 8506-8516, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788996

RESUMO

Understanding changes in abundance is crucial for conservation, but population growth rates often vary over space and time. We use 40 years of count data (1979-2019) and Bayesian state-space models to assess the African penguin Spheniscus demersus population under IUCN Red List Criterion A. We deconstruct the overall decline in time and space to identify where urgent conservation action is needed. The global African penguin population met the threshold for Endangered with a high probability (97%), having declined by almost 65% since 1989. An historical low of ~17,700 pairs bred in 2019. Annual changes were faster in the South African population (-4.2%, highest posterior density interval, HPDI: -7.8 to -0.6%) than the Namibian one (-0.3%, HPDI: -3.3 to +2.6%), and since 1999 were almost -10% at South African colonies north of Cape Town. Over the 40-year period, the Eastern Cape colonies went from holding ~25% of the total penguin population to ~40% as numbers decreased more rapidly elsewhere. These changes coincided with an altered abundance and availability of the main prey of African penguins. Our results underline the dynamic nature of population declines in space as well as time and highlight which penguin colonies require urgent conservation attention.

17.
Ecology ; 101(8): e03072, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32298472

RESUMO

Some invasive plant species rapidly evolve greater size and/or competitive ability in their nonnative ranges. However, it is not well known whether these traits transfer back to the native range, or instead represent genotype-by-environment interactions where traits are context specific to communities in the new range where the evolution occurred. Insight into transferability vs. context specificity can be tested using experiments performed with individuals from populations from the native and nonnative ranges of exotic invasive species. Using a widespread invasive plant species in Europe, Solidago gigantea, we established reciprocal common garden experiments in the native range (Montana, North America; n = 4) and the nonnative range (Hungary, Europe; n = 4) to assess differences in size, vegetative shoot number, and herbivory between populations from the native and nonnative ranges. In a greenhouse experiment, we also tested whether the inherent competitive ability of genotypes from 15 native and 15 invasive populations differed when pitted against 11 common native North American competitors. In common gardens, plants from both ranges considered together produced five times more biomass, grew four times taller, and developed five times more rhizomes in the nonnative range garden compared to the native range garden. The interaction between plant origin and the common garden location was highly significant, with plants from Hungary performing better than plants from Montana when grown in Hungary, and plants from Montana performing better than plants from Hungary when grown in Montana. In the greenhouse, there were no differences in the competitive effects and responses of S. gigantea plants from the two ranges when grown with North American natives. Our results suggest that S. gigantea might have undergone rapid evolution for greater performance abroad, but if so, this response does not translate to greater performance at home.


Assuntos
Espécies Introduzidas , Solidago , Europa (Continente) , Humanos , Montana , América do Norte
18.
Parasitology ; 146(6): 791-804, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724152

RESUMO

The African penguin (Spheniscus demersus) is a critically endangered species endemic to southern Africa. Limited information is available on the parasite diversity associated with the species in natural settings. This study explores the diversity and incidence of parasites associated with African penguins and their nests, and records the effect of host and environmental factors on parasite infestation. Ecto-, haemo- and helminth parasites were recorded from 210 adult birds, 583 chicks and 628 nests across five colonies (two mainland and three islands) along the south-western coast of South Africa, in 2016 and 2017. Mean nest density (total and active nests) and climate variables (temperature and precipitation) were obtained for each colony. Parapsyllus humboldti was the most abundant and prevalent ectoparasite on penguins and in nests (69.10 and 57.80%, respectively), while Piroplasmorida/Haemospororida (33.51%) and Cardiocephaloides spp. (56.17%) were the most prevalent haemo- and helminth parasites of penguins, respectively. In general parasite abundance and prevalence was significantly affected by penguin age (chicks vs adults), location (mainland vs islands), nest density (total and active nests) and season (spring vs autumn/winter). It is concluded that parasite infestations are structured and that penguin chicks at mainland colonies are more susceptible to parasite infestations during spring.


Assuntos
Biodiversidade , Parasitos/classificação , Parasitos/isolamento & purificação , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Spheniscidae/parasitologia , Animais , Incidência , Prevalência , África do Sul/epidemiologia
19.
Am J Bot ; 105(2): 207-214, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29573396

RESUMO

PREMISE OF THE STUDY: Arbuscular mycorrhizal (AM) fungi can promote plant growth and reproduction, but other plant physiological traits or traits that provide defense against herbivores can also be affected by AM fungi. However, whether responses of different traits to AM fungi are correlated and whether these relationships vary among plants from different populations are unresolved. METHODS: In a common garden experiment, we grew Asclepias speciosa plants from seed collected from populations found along an environmental gradient with and without AM fungi to assess whether the responses of six growth and defense traits to AM fungi are correlated. KEY RESULTS: Although there was strong genetic differentiation in mean trait values among populations, AM fungi consistently increased expression of most growth and defense traits across all populations. Responses of biomass and root to shoot ratio to AM fungi were positively correlated, suggesting that plants that are more responsive to AM fungi allocated more biomass belowground. Responses of biomass and trichome density to AM fungi were negatively correlated, indicating a trade-off in responsiveness between a growth and defensive trait. CONCLUSIONS: Our results suggest that while there is substantial population differentiation in many traits of A. speciosa, populations respond similarly to AM fungi, and both positive and negative correlations among trait responses occur.


Assuntos
Asclepias/microbiologia , Micorrizas/metabolismo , Asclepias/anatomia & histologia , Asclepias/crescimento & desenvolvimento , Asclepias/fisiologia , Biomassa , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...