Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Front Immunol ; 15: 1423141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055713

RESUMO

Background: Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective: The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods: Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results: We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion: In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.


Assuntos
Linfócitos B , Mutação , Proteína Grupo D do Xeroderma Pigmentoso , Humanos , Linfócitos B/imunologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/deficiência , Masculino , Feminino , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/imunologia , Reparo do DNA , Criança , Ativação Linfocitária/genética , Pré-Escolar , Adolescente
2.
Front Immunol ; 15: 1411141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040098

RESUMO

Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare, combined immunodeficiency disease predominantly caused by gain-of-function variants in the CXCR4 gene that typically results in truncation of the carboxyl terminus of C-X-C chemokine receptor type 4 (CXCR4) leading to impaired leukocyte egress from bone marrow to peripheral blood. Diagnosis of WHIM syndrome continues to be challenging and is often made through clinical observations and/or genetic testing. Detection of a pathogenic CXCR4 variant in an affected individual supports the diagnosis of WHIM syndrome but relies on an appropriate annotation of disease-causing variants. Understanding the genotypic-phenotypic associations in WHIM syndrome has the potential to improve time to diagnosis and guide appropriate clinical management, resulting in a true example of precision medicine. This article provides an overview of the spectrum of CXCR4 variants in WHIM syndrome and summarizes the various lines of clinical and functional evidence that can support interpretation of newly identified variants.


Assuntos
Doenças da Imunodeficiência Primária , Receptores CXCR4 , Verrugas , Receptores CXCR4/genética , Humanos , Verrugas/genética , Verrugas/diagnóstico , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/diagnóstico , Mutação , Estudos de Associação Genética , Predisposição Genética para Doença , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/diagnóstico
3.
Front Pediatr ; 12: 1415020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026935

RESUMO

Background and aims: There is an increased risk of lymphomas in inborn errors of immunity (IEI); however, germline genetic testing is rarely used in oncological patients, even in those with early onset of cancer. Our study focuses on a child with a recombination-activating gene 1 (RAG1) deficiency who was identified through a screening program for Slavic founder genetic variants among patients who died with malignancy at an early age in Belarus. Results: We identified one homozygous founder RAG1 variant out of 24 available DNA samples from 71 patients who developed lymphoma aged <3 years from the Belarusian cancer registry between 1986 and 2023. Our patient had an episode of pneumonia at 3 months of age and was hospitalized for respiratory distress, candida-positive lung disease, and lymphadenopathy at 14 months of age. The diagnosis of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) was established. The patient had a normal lymphocyte count that decreased over time. One month after chemotherapy initiation, the patient died due to sepsis and multiple organ failure without a genetic diagnosis. In a retrospective analysis, T-cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs) were undetectable in peripheral blood. Conclusions: A targeted screening program designed to detect a Slavic founder variant in the RAG1 gene among children revealed a 14-month-old Belarusian male infant with low TREC levels who died of EBV-driven DLBCL and complications of chemotherapy including infections. This case highlights how patients with IEI and recurrent infections may develop serious non-infectious complications, such as fatal malignancy. It also emphasizes the importance of early identification, such as newborn screening for severe combined immune deficiency. Earlier diagnosis of RAG deficiency could have prompted hematopoietic stem cell transplant well before the DLBCL occurrence. This likely would impact the onset and/or management strategies for the cancer.

7.
J Clin Immunol ; 44(2): 42, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231436

RESUMO

BACKGROUND: Patients with partial DiGeorge syndrome (pDGS) can present with immune dysregulation, the most common being autoimmune cytopenia (AIC). There is a lack of consensus on the approach to type, combination, and timing of therapies for AIC in pDGS. Recognition of immune dysregulation early in pDGS clinical course may help individualize treatment and prevent adverse outcomes from chronic immune dysregulation. OBJECTIVES: Objectives of this study were to characterize the natural history, immune phenotype, and biomarkers in pDGS with AIC. METHODS: Data on clinical presentation, disease severity, immunological phenotype, treatment selection, and response for patients with pDGS with AIC were collected via retrospective chart review. Flow cytometric analysis was done to assess T and B cell subsets, including biomarkers of immune dysregulation. RESULTS: Twenty-nine patients with the diagnosis of pDGS and AIC were identified from 5 international institutions. Nineteen (62%) patients developed Evan's syndrome (ES) during their clinical course and twenty (69%) had antibody deficiency syndrome. These patients demonstrated expansion in T follicular helper cells, CD19hiCD21lo B cells, and double negative cells and reduction in CD4 naïve T cells and regulatory T cells. First-line treatment for 17/29 (59%) included corticosteroids and/or high-dose immunoglobulin replacement therapy. Other overlapping therapies included eltrombopag, rituximab, and T cell immunomodulators. CONCLUSIONS: AIC in pDGS is often refractory to conventional AIC treatment paradigms. Biomarkers may have utility for correlation with disease state and potentially even response to therapy. Immunomodulating therapies could be initiated early based on early immune phenotyping and biomarkers before the disease develops or significantly worsens.


Assuntos
Citopenia , Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/terapia , Estudos Retrospectivos , Antígenos CD19 , Progressão da Doença
9.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015619

RESUMO

AIOLOS, also known as IKZF3, is a transcription factor that is highly expressed in the lymphoid lineage and is critical for lymphocyte differentiation and development. Here, we report on 9 individuals from 3 unrelated families carrying AIOLOS variants Q402* or E82K, which led to AIOLOS haploinsufficiency through different mechanisms of action. Nonsense mutant Q402* displayed abnormal DNA binding, pericentromeric targeting, posttranscriptional modification, and transcriptome regulation. Structurally, the mutant lacked the AIOLOS zinc finger (ZF) 5-6 dimerization domain, but was still able to homodimerize with WT AIOLOS and negatively regulate DNA binding through ZF1, a previously unrecognized function for this domain. Missense mutant E82K showed overall normal AIOLOS functions; however, by affecting a redefined AIOLOS protein stability domain, it also led to haploinsufficiency. Patients with AIOLOS haploinsufficiency showed hypogammaglobulinemia, recurrent infections, autoimmunity, and allergy, but with incomplete clinical penetrance. Altogether, these data redefine the AIOLOS structure-function relationship and expand the spectrum of AIOLOS-associated diseases.


Assuntos
Haploinsuficiência , Transativadores , Humanos , DNA , Regulação da Expressão Gênica , Transativadores/metabolismo , Fatores de Transcrição/genética
11.
Front Immunol ; 14: 1155380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475856

RESUMO

Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Homeodomínio/genética , Imunodeficiência Combinada Severa/genética , Autoimunidade , Fenótipo , Autoanticorpos/genética
12.
Clin Lab Med ; 43(3): 467-483, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481324

RESUMO

Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.


Assuntos
Subpopulações de Linfócitos B , Doenças do Sistema Imunitário , Síndromes de Imunodeficiência , Humanos , Doenças do Sistema Imunitário/diagnóstico , Síndromes de Imunodeficiência/diagnóstico , Linfócitos B , Citometria de Fluxo
13.
J Clin Immunol ; 43(6): 1414-1425, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160610

RESUMO

PURPOSE: To achieve reductions in infusion time, infusion sites, and frequency, a prospective, open-label, multicenter, Phase 3 study evaluated the safety, efficacy, and tolerability of subcutaneous immunoglobulin (SCIG) 16.5% (Cutaquig®, Octapharma) at enhanced infusion regimens. METHODS: Three separate cohorts received SCIG 16.5% evaluating volume, rate, and frequency: Cohort 1) volume assessment/site: up to a maximum 100 mL/site; Cohort 2) infusion flow rate/site: up to a maximum of 100 mL/hr/site or the maximum flow rate achievable by the tubing; Cohort 3) infusion frequency: every other week at twice the patient's weekly dose. RESULTS: For Cohort 1 (n = 15), the maximum realized volume per site was 108 mL/site, exceeding the currently labeled (US) maximum (up to 40 mL/site for adults). In Cohort 2 (n = 15), the maximum realized infusion flow rate was 67.5 mL/hr/site which is also higher than the labeled (US) maximum (up to 52 mL/hr/site). In Cohort 3 (n = 34), the mean total trough levels for every other week dosing demonstrated equivalency to weekly dosing (p value = 0.0017). All regimens were well tolerated. There were no serious bacterial infections (SBIs). Most patients had mild (23.4%) or moderate (56.3%) adverse events. The majority of patients found the new infusion regimens to be better or somewhat better than their previous regimens and reported that switching to SCIG 16.5% was easy. CONCLUSIONS: SCIG 16.5% (Cutaquig®), infusions are efficacious, safe, and well tolerated with reduced infusion time, fewer infusion sites, and reduced frequency. Further, the majority of patients found the new infusion regimens to be better or somewhat better than their previous regimens.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Adulto , Humanos , Imunoglobulinas Intravenosas/efeitos adversos , Estudos Prospectivos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/tratamento farmacológico , Infusões Subcutâneas , Imunoglobulina G/uso terapêutico , Doenças da Imunodeficiência Primária/tratamento farmacológico , Avaliação de Resultados da Assistência ao Paciente
15.
J Allergy Clin Immunol Pract ; 11(6): 1725-1733, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36736953

RESUMO

BACKGROUND: ADAGEN, a bovine-based enzyme replacement therapy (ERT), has been used to treat adenosine deaminase severe combined immunodeficiency (ADA-SCID). In 2018, ADAGEN was replaced by REVCOVI (elapegademase), a modified bovine recombinant protein. OBJECTIVE: To determine the real-life long-term benefits of REVCOVI in ADA-SCID. METHODS: Data on ERT, infectious and noninfectious complications, and metabolic and immune evaluations were collected from 17 patients with ADA-SCID treated for 6 months or more with REVCOVI. RESULTS: Eleven patients had previously received ADAGEN for 16 to 324 months, whereas 6 patients were ERT-naive. REVCOVI was administered twice weekly at 0.4 mg/kg/wk in ERT-naive patients, whereas patients transitioning to REVCOVI from ADAGEN typically continued at the same frequency and equivalent dosing as ADAGEN, resulting in a significantly lower (P = .007) total REVCOVI dose in the transitioning group. REVCOVI treatment in the ERT-naive group led to the resolution of many clinical and laboratory complications of ADA deficiency, whereas there were no new adverse effects among the transitioning patients. REVCOVI treatment increased plasma ADA activity and decreased dAXP (which included deoxyadenosine mono-, di-, and tri phosphate) among most patients, effects that persisted throughout the 7- to 37-month treatment periods, except in 2 patients with incomplete adherence. Among some patients, after 0.5 to 6 months, injection frequency was reduced to once a week, while maintaining adequate metabolic profiles. All ERT-naive infants treated with REVCOVI demonstrated an increase in the number of CD4+ T and CD19+ B cells, although these counts remained stable but lower than normal in most transitioning patients. CONCLUSIONS: REVCOVI is effective for the management of ADA-SCID.


Assuntos
Reconstituição Imune , Imunodeficiência Combinada Severa , Lactente , Humanos , Animais , Bovinos , Adenosina Desaminase/uso terapêutico , Imunodeficiência Combinada Severa/terapia
16.
J Allergy Clin Immunol Pract ; 11(1): 107-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610755

RESUMO

In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.


Assuntos
COVID-19 , Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Humanos , Pandemias , COVID-19/complicações , SARS-CoV-2 , Síndromes de Imunodeficiência/genética
17.
J Allergy Clin Immunol ; 151(4): 922-925, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36463978

RESUMO

BACKGROUND: Although previous studies described the production of IgG antibodies in a subgroup of patients with common variable immunodeficiency (CVID) following messenger RNA vaccinations with BNT162b2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (CVID responders), the functionality of these antibodies in terms of avidity as measured by the dissociation rate constant (kdis) and the antibody response to booster immunization has not been studied. OBJECTIVE: We sought to analyze in CVID responders and healthy individuals, the avidity of anti-SARS-CoV-2 serum antibodies and their neutralization capacity as measured by surrogate virus-neutralizing antibodies in addition to IgG-, IgM-, and IgA-antibody levels and the response of circulating (peripheral blood) follicular T-helper cells after a third vaccination with BNT162b2 SARS-CoV-2 messenger RNA vaccine. METHODS: Binding IgG, IgA, and IgM serum levels were analyzed by ELISA in patients with CVID responding to the primary vaccination (CVID responders, n = 10) and healthy controls (n = 41). The binding avidity of anti-spike antibodies was investigated using biolayer interferometry in combination with biotin-labeled receptor-binding-domain of SARS-CoV-2 spike protein and streptavidin-labeled sensors. Antigen-specific recall T-cell responses were assessed by measuring activation-induced markers by flow cytometry. RESULTS: After the third vaccination with BNT162b2, IgG-, IgM-, and IgA-antibody levels, surrogate virus-neutralizing antibody levels, and antibody avidity were lower in CVID responders than in healthy controls. In contrast, anti-SARS-CoV-2 spike protein avidity was comparable in CVID responders and healthy individuals following primary vaccination. Follicular T-helper cell response to booster vaccination in CVID responders was significantly reduced when compared with that in healthy individuals. CONCLUSIONS: Impaired affinity maturation during booster response provides new insight into CVID pathophysiology.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Humanos , Vacina BNT162 , Formação de Anticorpos , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas contra COVID-19 , Anticorpos Bloqueadores , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina M
18.
Am J Med Genet C Semin Med Genet ; 190(2): 215-221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36210583

RESUMO

Newborn screening (NBS) for severe combined immunodeficiency (SCID) utilizing T-cell receptor excision circles (TRECs) has been implemented in all 50 states as of December 2018 and has been transformative for the clinical care of SCID patients. Though having high sensitivity for SCID, NBS-SCID has low specificity, therefore is able to detect other causes of lymphopenia in newborns including many inborn errors of immunity (IEIs). In a recent study, three of six newborns later diagnosed with Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome were found to have a low TRECs and lymphopenia at birth. This presents an opportunity to increase the detection and diagnosis of WHIM syndrome by NBS-SCID with immunological follow-up along with a combination of flow cytometry for immune cell subsets, absolute neutrophil count, and genetic testing, extending beyond the conventional bone marrow studies. Coupled with emerging technologies such as next-generation sequencing, transcriptomics and proteomics, dried blood spots used in NBS-SCID will promote earlier detection, diagnosis, and therefore treatment of IEIs such as WHIM syndrome.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Recém-Nascido , Humanos , Triagem Neonatal , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Linfopenia/diagnóstico , Receptores de Antígenos de Linfócitos T/genética
20.
Sci Immunol ; 7(75): eabo3170, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149943

RESUMO

Gain-of-function (GOF) mutations in CXCR4 cause WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, characterized by infections, leukocyte retention in bone marrow (BM), and blood leukopenias. B lymphopenia is evident at early progenitor stages, yet why do CXCR4 GOF mutations that cause B (and T) lymphopenia remain obscure? Using a CXCR4 R334X GOF mouse model of WHIM syndrome, we showed that lymphopoiesis is reduced because of a dysregulated mesenchymal stem cell (MSC) transcriptome characterized by a switch from an adipogenic to an osteolineage-prone program with limited lymphopoietic activity. We identify lymphotoxin beta receptor (LTßR) as a critical pathway promoting interleukin-7 (IL-7) down-regulation in MSCs. Blocking LTßR or CXCR4 signaling restored IL-7 production and B cell development in WHIM mice. LTßR blocking also increased production of IL-7 and B cell activating factor (BAFF) in secondary lymphoid organs (SLOs), increasing B and T cell numbers in the periphery. These studies revealed that LTßR signaling in BM MSCs and SLO stromal cells limits the lymphocyte compartment size.


Assuntos
Síndromes de Imunodeficiência , Linfopenia , Animais , Fator Ativador de Células B , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Interleucina-7 , Receptor beta de Linfotoxina , Camundongos , Doenças da Imunodeficiência Primária , Nicho de Células-Tronco , Linfócitos T , Verrugas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...